首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 224 毫秒
1.
A new imaging device for dynamic electron microscopy is in great demand. The detector should provide the experimenter with images having sufficient spatial resolution at high speed. Immunity to radiation damage, accumulated during exposures, is critical. Photographic film, a traditional medium, is not adequate for studies that require large volumes of data or rapid recording and charge coupled device (CCD) cameras have limited resolution, due to phosphor screen coupling. CCD chips are not suitable for direct recording due to their extreme sensitivity to radiation damage. This paper discusses characterization of monolithic active pixel sensors (MAPS) in a scanning electron microscope (SEM) as well as in a transmission electron microscope (TEM). The tested devices were two versions of the MIMOSA V (MV) chip. This 1M pixel device features pixel size of 17 x 17 microm(2) and was designed in a 0.6 microm CMOS process. The active layer for detection is a thin (less than 20 microm) epitaxial layer, limiting the broadening of the electron beam. The first version of the detector was a standard imager with electronics, passivation and interconnection layers on top of the active region; the second one was bottom-thinned, reaching the epitaxial layer from the bottom. The electron energies used range from a few keV to 30 keV for SEM and from 40 to 400 keV for TEM. Deterioration of the image resolution due to backscattering was quantified for different energies and both detector versions.  相似文献   

2.
The electron imaging performance of Medipix2 is described. Medipix2 is a hybrid pixel detector composed of two layers. It has a sensor layer and a layer of readout electronics, in which each 55 microm x 55 microm pixel has upper and lower energy discrimination and MHz rate counting. The sensor layer consists of a 300 microm slab of pixellated monolithic silicon and this is bonded to the readout chip. Experimental measurement of the detective quantum efficiency, DQE(0) at 120 keV shows that it can reach approximately 85% independent of electron exposure, since the detector has zero noise, and the DQE(Nyquist) can reach approximately 35% of that expected for a perfect detector (4/pi(2)). Experimental measurement of the modulation transfer function (MTF) at Nyquist resolution for 120 keV electrons using a 60 keV lower energy threshold, yields a value that is 50% of that expected for a perfect detector (2/pi). Finally, Monte Carlo simulations of electron tracks and energy deposited in adjacent pixels have been performed and used to calculate expected values for the MTF and DQE as a function of the threshold energy. The good agreement between theory and experiment allows suggestions for further improvements to be made with confidence. The present detector is already very useful for experiments that require a high DQE at very low doses.  相似文献   

3.
A multiport-readout, frame-transfer charge-coupled device (CCD) digital imaging system has been successfully developed and tested for intermediate-high-voltage electron microscopy (IVEM) applications up to 400 keV. The system employs a back-thinned CCD with 2560 x 1960 pixels and a pixel size of 24 microm x 24 microm. In the current implementation, four of the eight on-chip readout ports are used in parallel each operating at a pixel rate of 1- or 2-MHz so that the entire CCD array can be read out in as short as 0.6 s. The frame-transfer readout functions as an electronic shutter which permits the rapid transfer of charges in the active pixels to four masked buffers where the charges are readout and digitized while the active area of the CCD is integrating the next frame. With a thin film-based phosphor screen and a high-performance lens relay, the system has a conversion factor of 2.1 digital units per incident electron at 400 keV, and a modulation transfer function value of 14% at the Nyquist frequency.  相似文献   

4.
Recent progress in detector design has created the need for a careful side-by-side comparison of the modulation transfer function (MTF) and resolution-dependent detective quantum efficiency (DQE) of existing electron detectors with those of detectors based on new technology. We present MTF and DQE measurements for four types of detector: Kodak SO-163 film, TVIPS 224 charge coupled device (CCD) detector, the Medipix2 hybrid pixel detector, and an experimental direct electron monolithic active pixel sensor (MAPS) detector. Film and CCD performance was measured at 120 and 300 keV, while results are presented for the Medipix2 at 120 keV and for the MAPS detector at 300 keV. In the case of film, the effects of electron backscattering from both the holder and the plastic support have been investigated. We also show that part of the response of the emulsion in film comes from light generated in the plastic support. Computer simulations of film and the MAPS detector have been carried out and show good agreement with experiment. The agreement enables us to conclude that the DQE of a backthinned direct electron MAPS detector is likely to be equal to, or better than, that of film at 300 keV.  相似文献   

5.
We describe the application of a silicon hybrid pixel detector, containing 64 by 64 pixels, each 170 microm(2), in electron microscopy. The device offers improved resolution compared to CCDs along with faster and noiseless readout. Evaluation of the detector, carried out on a 120 kV electron microscope, demonstrates the potential of the device.  相似文献   

6.
The complete characterization of a novel direct detection device (DDD) camera for transmission electron microscopy is reported, for the first time at primary electron energies of 120 and 200 keV. Unlike a standard charge coupled device (CCD) camera, this device does not require a scintillator. The DDD transfers signal up to 65 lines/mm providing the basis for a high-performance platform for a new generation of wide field-of-view high-resolution cameras. An image of a thin section of virus particles is presented to illustrate the substantially improved performance of this sensor over current indirectly coupled CCD cameras.  相似文献   

7.
The fast deflection system described in this paper is suitable for controlling the intensity reaching the detector of a magnetic sector electron spectrometer mounted below an analytical transmission electron microscope. Amongst other things, this allows the low loss region of the spectrum to be recorded with the same electron probe conditions used to record core losses, something that is essential for high spatial resolution studies. The plate assembly restricts the width of the electron distribution reaching the viewing screen to a strip approximately 17 mm wide in the direction approximately normal to the dispersion direction of the spectrometer. The resulting deflection has no detectable effect on the FWHM of the zero-loss peak for exposure times as short as 1 micros. At incident energies up to 300 keV, positioning the deflection plates in the 35 mm camera port above the viewing chamber allows voltages of < +/- 3 kV to deflect the electrons out of the spectrometer and beyond the edge of the annular detector. When the deflection is switched on, the electrons are deflected out of the spectrometer in < 40 ns and when the deflection is switched off, the electrons return to within 10 microm of the undeflected position within 100 ns. Thus, even at an exposure time of 30 micros, the smallest time likely to be used in practice with a GATAN 666 spectrometer, < 1% of the signal in the spectrum is from electrons whose scattering conditions differ from those in the undeflected position. The performance of the deflection system is such that it will also be suitable for use with the new and much faster GATAN ENFINA spectrometer system. At incident energies up to 200 keV and possibly up to 300 keV, deflection voltages of +/- 3 kV are sufficient to deflect the electrons off a 1 k x 1 k charge coupled device (CCD) camera placed below the photographic camera. Thus the deflection system can be used as a very fast, non-mechanical shutter for such a CCD camera.  相似文献   

8.
9.
Measurements of the electron range R, and the backscattering coefficient η and the secondary electron yield δ at normal and tilted incidence for different elements show characteristic differences for electron energies in the range of 0.5 to 5 keV, compared with energies larger than 5 keV. The backscattering coefficient does not increase monotonically with increasing atomic number; for example, the secondary electron yield shows a lesser increase with increasing tilt angle. This can be confirmed in back-scattered electron (BSE) and secondary electron (SE) micrographs of test specimens. The results are in rather good agreement with Monte Carlo simulations using elastic Mott cross-sections and a continuous-slowing-down model with a Rao Sahib-Wittry approach for the stopping power at low electron energies. Therefore, this method can be used to calculate quantities of BSE and SE emission, which need a larger experimental effort. Calculations of the angular distribution of BSEs show an increasing intensity with increasing atomic number at high takeoff angles than expected from a cosine law that describes the angular characteristics at high electron energies. When simulating the energy distribution of BSEs, the continuous-slowing-down model should be substituted by using an electron energy-loss spectrum (EELS) that considers plasmon losses and inner-shell ionizations individually (single-scattering-function model). The EELS can be approached via the theory for aluminium or from EELS spectra recorded in a transmission electron microscope for other elements. Measurements of electron range Rα En of 1 to 10 keV electrons are obtained from transmission experiments with thin films of known mass thickness. In agreement with other authors the exponent n is lower than at higher electron energies.  相似文献   

10.
An electron gun constructed using carbon-nanofiber (CNF) emitters and an electrostatic Einzel lens system has been characterized for the development of a high-resolution x-ray source. The CNFs used were grown on tungsten and palladium tips by plasma-enhanced chemical-vapor deposition. Electron beams with the energies of 10相似文献   

11.
In secondary and scanning transmission electron microscopes, secondary electron images of surface films can be dominated by an image derived from electrons back-scattered from the interface between the film and the substrate. The extent of the domination has been established by studying the variation in image obtained using primary beams of different energy and by platinum coating to enhance surface secondary electron emission. Studies of thicker films also established that chemical or structural difference within a film also lead to imaging effects. In general, 5 keV electrons are the most effective in producing subsurface and structural or chemical imaging effects.  相似文献   

12.
In order to study the interaction of ions of intermediate energies with plasma fluctuations, two plasma immersible lithium ion sources, based on solid-state thermionic emitters (Li aluminosilicate) were developed. Compared to discharge based ion sources, they are compact, have zero gas load, small energy dispersion, and can be operated at any angle with respect to an ambient magnetic field of up to 4.0 kG. Beam energies range from 400 eV to 2.0 keV with typical beam current densities in the 1 mAcm(2) range. Because of the low ion mass, beam velocities of 100-300 kms are in the range of Alfven speeds in typical helium plasmas in the large plasma device.  相似文献   

13.
An injector of intense beams of carbon ions is described. The device uses an array of carbon plasma guns to inject ions directly into a magnetically insulated acceleration gap. Ion currents exceed 3 kA with beam energies between 100 and 300 keV (for C+) and 200 and 600 keV (for C+ +) over a 700-ns pulselength.  相似文献   

14.
We compare the direct electron imaging performance at 120 keV of a monolithic active pixel sensor (MAPS) operated in a conventional integrating mode with the performance obtained when operated in a single event counting mode. For the combination of sensor and incident electron energy used here, we propose a heuristic approach with which to process the single event images in which each event is renormalised to have an integrated weight of unity. Using this approach we find enhancements in the Nyquist frequency modulation transfer function (MTF) and detective quantum efficiency (DQE) over the corresponding integrating mode values by factors of 8 and 3, respectively.  相似文献   

15.
Picotto GB  Pisani M 《Ultramicroscopy》2001,86(1-2):247-254
A sample scanning device operating in a working volume of 30 x 30 x 18 microm with interferometer and capacitance-based controls of displacements, is described. The xy-stage uses plane mirror linear interferometers and fast phase-meters for control of displacements of precise ball-bearing stages driven by piezo flexure actuators. The stage operates with a full range bandwidth of 200 Hz, and an estimated accuracy (k = 2) of 3 nm + 1 x 10(-3) L, where L is the lateral displacement. A novel z-stage based on a kinematic coupling between two plates, the upper one being moved by three bimorph plates and the distance being measured by three capacitive sensor, is described. The tilt of the z-stage is kept within fractions of a microrad, leading to a full range estimated accuracy of 2 nm + 2 x 10(-3) h, where h is the vertical displacement. The control bandwidth is of about 1 kHz, thus allowing fast and accurate step-height measurements. In order to test the device used in a scanning probe microscope, micrometric patterned surfaces made using high resolution e-beam lithography and precise metal deposition on silicon are imaged. Results of pitch measurements are discussed and compared with those obtained using optical diffractometry.  相似文献   

16.
The actual accelerating voltage in a scanning electron microscope (SEM) was determined using electron channeling patterns (ECPs). The technique involves selection of a set of high index lines. The properly chosen set of lines exhibits highly sensitive shifts as voltage is changed, allowing rapid SEM voltage calibration. The actual voltage is determined from a simple formula involving measurement of two distances on an ECP obtained from (100) silicon. Such calibrations were performed using both (100)Si and (100)GaAs crystals and the results were compared with voltage estimates from the high energy end of the continuous x-ray spectrum from silicon. The ECP determination was accurate to about 0.1 keV for a nominal setting of 15 keV. This is comparable to the accuracy of the x-ray technique when short (~300 s) counting times are used.  相似文献   

17.
For an experiment to study neutron radiative beta-decay, we operated large area avalanche photodiodes (APDs) near liquid nitrogen temperature to detect x rays with energies between 0.2 keV and 20 keV. Whereas there are numerous reports of x ray spectrometry using APDs at energies above 1 keV, operation near liquid nitrogen temperature allowed us to reach a nominal threshold of 0.1 keV. However, due to the short penetration depth of x rays below 1 keV, the pulse height spectrum of the APD become complex. We studied the response using monochromatic x ray beams and employed phenomenological fits of the pulse height spectrum to model the measurement of a continuum spectrum from a synchrotron. In addition, the measured pulse height spectrum was modelled using a profile for the variation in efficiency of collection of photoelectrons with depth into the APD. The best results are obtained with the collection efficiency model.  相似文献   

18.
We have developed a high-efficiency high-resolution particle-induced x-ray emission (PIXE) system employing a von Hamos-type crystal spectrometer for a chemical state identification of trace elements in environmental samples. The energy resolution of the system was determined to be about 0.05% through the observation of Si Kalpha(1,2) x rays (1.74 keV) from elemental silicon. The throughput efficiency of the system was also evaluated quasitheoretically to be 1.6x10(-7) counts/incident proton for Si Kalpha(1,2) emission. To demonstrate a chemical state analysis using the high-resolution PIXE system, Si Kalpha(1,2) and Kbeta x-ray spectra for SiC, Si(3)N(4), and SiO(2) were measured and compared. The observed chemical shifts of the Si Kalpha(1,2) peaks for SiC, Si(3)N(4), and SiO(2) relative to elemental silicon were 0.20, 0.40, and 0.55 eV, respectively. The tendency of these shifts were well explained by the effective charges of the silicon atoms calculated by a molecular orbital method.  相似文献   

19.
用于恶劣环境的耐高温压力传感器   总被引:1,自引:0,他引:1  
为了解决如高温200℃等恶劣环境下的压力测量问题,基于微机电系统(MEMS)和高能氧离子注入(SIMOX)技术,研制了一种量程为0~120 kPa的压阻式压力传感器。该传感器芯片由硅基底、薄层二氧化硅、惠斯登电桥结构的硼离子注入层、氮化硅应力匹配层、钛-铂-金梁式引线层和由湿法刻蚀形成的空腔组成。在氧剂量1.4×1018/cm2和注入能量200 keV条件下,由高能氧离子注入技术形成厚度为367 nm的埋层二氧化硅层,从而将上部测量电路层和硅基底隔离开,解决了漏电流问题,使得传感器芯片可以在高温200 ℃以上的环境下使用。为了提高传感器在宽温度范围内的稳定性,对温度补偿工艺进行了研究,补偿后的传感器灵敏度温度系数和零位温度系数很容易控制在1×10-4/℃·FS。实验标定结果表明:在200 ℃下,研发的耐高温压力传感器具有很好的工作性能,其线性度误差达0.12%FS、重复性误差为0.1%FS、迟滞误差为0.12%FS,精度达0.197%FS,满足油井、风洞、汽车和石化工业等现代工业的应用需求。  相似文献   

20.
This work describes an experimental study of the backscattering of electron beams with an energy range between 20 and 100 keV. The energy distribution of electrons backscattered by bulk gold and silicon samples at different take-off angles was determined with an original device. The different major sources of noise were studied and then the spectra obtained were processed. Theoretical interpretation of this phenomenon using Monte Carlo simulations will be presented in a future paper.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号