首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到16条相似文献,搜索用时 172 毫秒
1.
本文在渤海绥中361海上油藏条件下,测定了由磺酸盐型双子表面活性剂为主的表面活性剂(辛基酚基聚氧乙烯醚TX100与磺酸盐型双子表面活性剂按质量比1∶4)与疏水缔合聚合物组成的SP二元复合驱体系的黏度及其与渤海绥中361脱气原油间的界面张力,并考察该体系的抗温性、耐盐性、吸附性及老化稳定性等,测定了该驱油体系在不同渗透率岩心中的阻力系数和残余阻力系数,在三层非均质岩心上进行了表面活性剂浓度不同的6个室内驱油实验。研究结果表明,配方为3000 mg/L表面活性剂+1750 mg/L聚合物的SP二元复合驱油体系具有良好的抗温、抗盐、抗剪切性及老化稳定性;该二元复合驱油体系黏度达40 mPa.s以上,可使油水界面张力降至10-3mN/m数量级,同时该体系在不同渗透率岩心中均能建立较高的阻力系数与残余阻力系数;室内驱油实验表明,在三层非均质岩心中,聚合物浓度为1750 mg/L,二元体系与原油界面张力由100mN/m(表面活性剂0 mg/L)降至10-2mN/m(表面活性剂750 mg/L)数量级时提高采收幅度很大;当界面张力由10-2mN/m(表面活性剂750 mg/L)降至10-3mN/m(表面活性剂1000 3000 mg/L),复合驱采收率增加幅度很小;总体上,该SP二元复合驱油体系具有良好的提高采收率能力,可提高采收率35%以上。图3表4参9  相似文献   

2.
对比了硫酸酯双子表面活性剂GA12-4-12与十二烷基硫酸钠的油水动态界面张力及驱油效果,研究了GA12-4-12与非离子表面活性剂ANT1、ANT2复配体系在不同渗透率和不同矿化度条件下的驱油性能。结果表明,GA12-4-12具有优于单链表面活性剂的界面活性和提高采收率能力,使用浓度仅为800 mg/L时,在水驱(65.38%)基础上提高采收率11.67%。GA12-4-12能适用于中、低渗油藏,其提高采收率的能力随着矿化度的增加而逐渐下降。复合驱替实验表明,在2.5×105mg/L矿化度条件下,在水驱(60%)基础上,SP体系(400 mg/LGA12-4-12+100 mg/L ANT1)使渗透率为48.3×10-3μm2的低渗透率岩心提高采收率10.67%;在5×104mg/L矿化度条件下,在水驱(57.89%)基础上SP体系(400 mg/L GA12-4-12+100 mg/L ANT2)使渗透率为417×10-3μm2的中低渗透率岩心能提高采收率8.42%。  相似文献   

3.
表面活性剂的油水界面张力是评价其提高原油采收率能力的重要指标.采用旋转滴界面张力仪测定了阴离子双子表面活性剂GA8-4-8溶液与油相间的界面张力,考察了油相类别、温度、pH值、盐类和矿化度对其油水界面张力的影响.结果表明,GA8-4-8溶液在不同油相的油水界面表现出不同的界面活性,质量浓度为100 mg/L的GA8 -4 -8溶液与煤油间的油水界面张力达1.4×10-3 mN/m;升高GA8-4-8溶液的温度(30~70℃),有利于其降低油水界面张力;GA8-4-8溶液在pH值为7时,界面张力最低;GA8-4 -8溶液中加入单一无机盐NaCl及高矿化度地层水(质量浓度为50~250 g/L)均能有效提高其降低油水界面张力的能力,单一 CaCl2对其影响较小.GA8 -4 -8溶液在不同矿化度下均具有良好的界面活性,可满足高温、高矿化度油藏条件下提高原油采收率的需要.  相似文献   

4.
阴离子双子表面活性剂的油水界面张力研究   总被引:2,自引:0,他引:2  
为探究GA系列新型阴离子双子表面活性剂的油水界面活性及提高油层原油采收率的可行性,以模拟地层水和东河塘稀油,在45℃条件下,利用旋转液滴法测试了不同分子结构阴离子双子表面活性剂与稀油间的界面张力,并以GA12-4-12为对象,测试了其在不同浓度时的动态界面张力,考察了其与非离子表面活性剂ANT的复配性能。结果表明:连接基长度及碳链长度越长,油水界面张力越低;随GA12-4-12浓度增加,界面张力先降后升,0.3%时油水界面张力仅0.00885mN/m,但时间稳定性变差;GA12-4-12与ANT复配协同效果明显,复配比为4∶1时0.1%(GA12-4-12+ANT)加量可使油水界面张力达超低(0.00884mN/m),明显降低了GA12-4-12用量。可见GA12-4-12与ANT复配体系具有低剂量下提高原油采收率的性能,建议用该配方进行提高原油水驱采收率试验研究工作。  相似文献   

5.
针对河南双河油田Ⅵ油组90℃以上高温油藏条件,提出了由表面活性剂SH7与聚合物1630S组成的适合该油藏条件的SP二元复合驱油体系,研究了该二元驱油体系的界面性能、乳化性能、热稳定性能、抗吸附性能及驱油性能。结果表明,SP二元复合驱油体系(1630S浓度1500 mg/L)在SH7浓度高于500 mg/L时油水界面张力可达10~(-3)mN/m超低数量级,SH7浓度高于1000 mg/L后,界面张力可达10~(-4)mN/m数量级,且在30 min内即达到超低。组成为1500 mg/L 1630S+2000 mg/L SH7的SP二元复合体系的乳化性能良好,油水比为7∶3时乳状液黏度是SP二元复合体系的7倍以上。该SP二元复合体系的抗岩心吸附性能良好,在经历五次吸附后,油水界面张力仍可达8.82×10~(-4)mN/m。当体系中氧含量低于0.8 mg/L时,聚合物及SP二元复合体系的长期热稳定良好,95℃下老化180 d后的体系黏度仍高于初始值,油水界面张力可以保持在10~(-4)mN/m数量级。均质岩心驱油实验结果表明,水驱后注入0.606 PV的SP二元复合体系,在水驱(采收率42.26%)基础上可提高采收率22.16%,较同等条件下的聚合物驱高出6个百分点。三倍渗透率级差层内非均质岩心驱油实验结果表明,SP二元复合体系的最佳段塞尺寸为0.6 PV,在水驱基础上提高采收率16.23%。  相似文献   

6.
开发了一种低成本的阴/非离子复配型表面活性剂GBSG-1,并评价了该表面活性剂体系的性能。结果表明:在80℃、矿化度50000 mg/L、二价离子(Ca2+、Mg2+)含量2000 mg/L的情况下,油水间的界面张力可达10-3mN/m数量级。同时该表面活性剂体系具有较好的乳化能力,按体积比6:4将浓度为3 g/L的CBSG-1溶液与王瑶原油混合均匀后在80℃恒温静置12 h后的油水体积比为8:2。该体系具较强的抗吸附性,浓度为3 g/LCBSG-1溶液在岩心上的吸附量最大,为0.35 mg/g砂,吸附7 d后,油水界面张力仍可以保持在10-3mN/m超低数量级。驱替模拟实验说明:该表面活性剂驱油体系可在水驱基础上使渗透率95.2×10-3μm2的低渗透率岩心提高采收率12.7%。该体系可满足长庆油田部分高温、高矿化度及低渗透油藏对驱油用表面活性剂的要求。  相似文献   

7.
复合驱中界面张力数量级与提高采收率的关系研究   总被引:8,自引:0,他引:8  
文章分析了表面活性剂/聚合物二元复合驱和碱/表面活性剂/聚合物三元复合驱驱油指标(超低界面张力必须达到10-3mN/m)理论的缺陷;在大量岩心试验的基础上,比较了不同界面张力下的采收率值,认为平衡界面张力为10-3mN/m不是表面活性剂驱油及复合驱的必要条件,平衡界面张力为10-2mN/m时也能达到与前者同样的驱油效果;并且只要瞬时界面张力达到10-3mN/m,也能达到较好的驱油效果,从而为表面活性剂复合驱的广泛应用提供了实验基础。  相似文献   

8.
通过进行油水动态界面张力测试,系统地研究表面活性剂种类、表面活性剂浓度、水介质矿化度、聚合物及非离子表面活性剂对动态界面张力的影响。结果表明,与传统表面活性剂比12-4-12有较强界面活性,在低浓度下,能将界面张力降低到5×10-3 mN/m。提高表面活性剂浓度,可以缩短达到平衡的时间,但当浓度超过一定值时,继续增加12-4-12浓度,会降低其界面活性。12-4-12最佳浓度为500 mg/L。12-4-12在不同矿化度都表现出良好界面活性,尤其在高矿化度下(25×104 mg/L)最佳。在高矿化度水介质中与常规非离子表面活性剂ANT复配,界面张力可降低到4×10-3 mN/m并稳定在10-3数量级,而与HPAM的复配性能较差,这可能与水介质矿化度过高有关。  相似文献   

9.
新型耐温耐盐表面活性剂驱油体系的研究   总被引:15,自引:2,他引:13  
合成了一种聚氧乙烯醚磺酸盐型表面活性剂,并将其与廉价的渣油磺酸盐表面活性剂复配,得到一种耐温、耐盐的复配表面活性剂驱油体系。将该表面活性剂驱油体系用于大港油田原油,在85℃下、模拟水的矿化度为35337mg/L、高价离子(Ca^2 、Mg^2 )含量为1000mg/L时,油水界面张力仍可达到超低(约10^-3mN/m),能满足大港油田部分高温、高矿化度油藏对驱油用表面活性剂的要求。  相似文献   

10.
采用阴离子表面活性剂石油磺酸盐(PS-30)与两性离子表面活性剂月桂酰胺丙基羟磺基甜菜碱(LHSB)复配得到复配表面活性剂L/P,利用界面张力仪和驱油装置对表面活性剂的性能进行了评价。同时通过分子动力学模拟,分析了L/P在油水界面聚集作用的微观机理。实验结果表明,L/P的界面性能、驱油效果优于PS-30和LHSB,LHSB与PS-30的最佳复配质量比为4∶6。在含量为0.3%(w)时,L/P(4∶6)的界面张力可达到10-3超低数量级,为3.91×10-3 mN/m,采收率提高幅度达到18.54%。L/P(4∶6)在油水界面分布的相对浓度更高,排列也更加紧密,界面生成能绝对值大于PS-30和LHSB,说明它降低界面张力的能力更强;LHSB的加入使L/P(4∶6)在油水界面处的扩散系数增大,扩散速度加快,界面张力达到超低量级所需的时间缩短。  相似文献   

11.
以往为了达到超低界面张力,复合驱大多使用较高质量浓度的表面活性剂,通常为1 000~3 000 mg/L,不仅增加了成本且未必能取得好的驱油效果。为了探究低质量浓度表面活性剂的驱油效果,设计了低质量浓度表面活性剂的复合驱物理模拟实验。静态实验结果表明,在低质量浓度表面活性剂条件下,油水界面张力可达到10-2mN/m数量级及以下,加碱后,界面张力更低;碱和表面活性剂都会对聚合物的粘度和粘弹性产生影响,碱在较高温度下会大幅度降低复合体系的粘度和粘弹性。驱油实验结果表明,与水驱相比,在所选择的低质量浓度表面活性剂驱油体系中,表面活性剂—聚合物二元复合驱和碱—表面活性剂—聚合物三元复合驱均可提高采收率19.5%以上,三元复合驱的驱油效果最好,提高采收率21.8%以上。这表明低质量浓度表面活性剂驱油体系驱油效果很好。  相似文献   

12.
氨基磺酸型两性双子表面活性剂的合成及性能   总被引:2,自引:0,他引:2  
以十二胺、2-氯乙基磺酸钠为主要原料,采用二氯代的亲水性基团作为联结基,制备了新型氨基磺酸型两性双子表面活性剂DAS-3PA和DAS-8EO;用红外光谱对其结构进行了表征,并对其表面活性和油水界面张力进行了测试。结果表明,两性双子表面活性剂表现出优于传统表面活性剂的表面活性,25℃时DAS-3PA和DAS-8EO临界胶束浓度分别达到6.9×10^-5mol/L和8.0×10^-5mol/L,此时界面张力分别降至25.01mN/m和26.17mN/m;DAS两性双子表面活性剂倾向于吸附在油水界面上,并能有效地降低原油与水的界面张力;DAS两性双子表面活性剂与聚合物复配时表现出较好协同效应,此复配二元体系均能将油水界面张力降低至10^-3mN/m以下。  相似文献   

13.
糠醛抽出油制取驱油用表面活性剂的研究   总被引:1,自引:0,他引:1  
以大庆炼油厂减二线糠醛抽出油为原料,发烟硫酸为磺化剂,在釜式磺化反应器中制备了一种石油磺酸盐表面活性剂,考察了合成条件对产品收率及表面活性的影响。结果表明,在酸油质量比为0.4:1,反应温度60℃,磺化时间45min的最佳合成工艺条件下,石油磺酸盐表面活性剂的收率为46.2%,产品活性物含量48.2%;石油磺酸盐溶液浓度在1mmol/L时油水界面张力31.5mN/m,临界胶束浓度1.7×10^-3mmol/L;与碳酸钠复配后,界面张力可降低至10^-3mN/m,适合用作三次采油用驱油表面活性剂。  相似文献   

14.
通过研究络合剂对部分水解聚丙烯酰胺(HPAM)和直链烷基甜菜碱(BH)粘度和油水界面张力的影响,探讨了在高矿化度条件下,利用络合剂作为助剂改善无碱一元和二元复合驱油体系增粘能力和油水界面性能的方法。结果表明,在NaCl,CaCl2和MgCl2的质量浓度分别为6 500,890和520 mg/L的矿化水中,质量浓度为50 mg/L的络合剂就可以使质量浓度为1 800 mg/L的HPAM的粘度增加80%以上,可以使质量浓度为800~3 000 mg/L的直链烷基甜菜碱BH与原油的最低界面张力由10-2mN/m数量级降低到超低水平,而且这种络合剂也可以使1 800 mg/L HPAM—800 mg/L BH二元复合体系老化30 d的粘度增加40%以上,并使油水界面张力最低值由1.52×10-2mN/m降低到6.06×10-3mN/m。通过考察粘度和油水动态界面张力随不同老化时间的变化规律,分析了络合剂的作用机制。  相似文献   

15.
在化学驱中,降低油水界面张力是表面活性剂驱油最基本的机理。三季铵盐表面活性剂因其特殊结构表现出更好的界面性能。针对已合成的三季铵盐,探讨了各因素对界面性能的影响,结果表明,纯三季铵盐溶液与长庆油区模拟油界面张力可达10-2mN/m,比常规活性剂低1~2个数量级,具有较好的耐盐、耐高温性;与阴离子活性剂α-烯烃磺酸盐复配后,界面张力可达10-4mN/m,表现出较好的协同效应。驱替实验结果表明,纯三季铵盐可降低低渗透岩心注入压力10.6%,提高采收率8.35%;与α-烯烃磺酸盐复配后,降压率为17.4%,岩心采收率提高了11.1%,降压和驱油效果更佳,这也表明界面张力越低,提高低渗透岩心采收率效果越好。  相似文献   

16.
陈庄原油超低界面张力驱油体系研究   总被引:1,自引:1,他引:0  
开展了单一表面活性剂体系、表面活性剂复配体系及碱+表面活性剂体系与陈庄原油间动态界面张力的测定实验。实验结果表明:CBET-13在较宽的质量分数范围内(0.05%~0.15%)可以使油水界面张力达到超低;质量比为4∶1的SLPS与KAS复配体系,当总质量分数在0.075%~0.15%的范围内可以使油水界面张力平衡值降至10-4 mN/m数量级;总有效质量分数为0.1%、质量比在(9∶1)~(6∶4)范围内的CBET-13与CBET-17复配体系使油水界面张力降到超低;0.2%NaOH+((0.05%~0.2%)SLPS、(0.025%~0.05%)AS-0-4、(0.01%~0.075%)AS-3-0、(0.03%~0.09%)HSBET-12)体系可以使油水界面张力降至10-3 mN/m以下。以上体系,可以作为陈庄油田超低界面张力驱油配方的选择。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号