首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 531 毫秒
1.
1. Patch clamp recording (whole cell configuration) was used to study the action of ATP on rat phaeochromocytoma (PC12) cells usually held at -70 mV and rapidly superfused with buffered saline. ATP (0.5, 1 or 5 mM), applied from micropipettes by pressure application with brief (< or = 50 ms) pulses, induced inward currents with rapid onset and decay. ADP and alpha, beta-methylene ATP were ineffective. 2. ATP (5 mM) applied with pulses > 200 ms long elicited a complex current response characterized by a rapid peak which faded and was followed by a strong current rebound (lasting several s) as soon as the application was terminated. This type of response was readily replicated as long as ATP applications were spaced at 2-3 min intervals. The amplitude of peak and rebound currents was dependent on the length of pressure pulse and was similarly depressed by bath application of a threshold dose (25 microM) of ATP. Rapid fading and rebound of ATP-induced membrane currents were also observed when the Y-tube method was used for applying this agonist. 3. The reversal potential for peak and rebound currents was the same while the time constant values for peak fading and rebound onset were insensitive to changes in membrane potential between -70 and -40 mV. When ATP was applied to a cell clamped at depolarized potential, no current was observed but rapid return of the membrane potential to -70 mV immediately at the end of ATP application was associated with a large rebound current. 4. Brief (20 ms) application of ATP during the onset of the rebound current strongly and transiently suppressed it. The same application performed during the gradual decay of the rebound wave elicited a transient inward current which was much smaller and shorter than the one observed when the cell was in its resting state. Application of 2 s ATP pulses at 20 s intervals equally reduced the initial peak and rebound currents which recovered at the same rate. 5. The present data are interpreted according to a scheme which suggests two types of ATP receptor desensitization. The first one (D1) would be characterized by fast kinetics and low agonist affinity; rapid recovery from D1 would then be manifested as current rebound presumably due to receptor reactivation. The second desensitized state (D2) has slow kinetics and high affinity for the agonist: it is therefore typically seen with sustained application of a low dose of ATP. It is proposed that desensitization and its recovery can influence the time course of membrane responses mediated by purinoceptors.  相似文献   

2.
1. The possible role of intracellular Ca2+ levels ([Ca2+]i) in desensitization of nicotinic acetylcholine receptors (AChRs) was investigated in rat cultured chromaffin cells by use of combined whole-cell patch clamping and confocal laser scanning microscopy with the fluorescent dye fluo-3. 2. On cells held at -70 mV, pressure-application of nicotine elicited inward currents with associated [Ca2+]i rises mainly due to influx through nicotinic AChRs. These responses were blocked by (+)-tubocurarine (10 microM) but were insensitive to alpha-bungarotoxin (1 microM) or Cd2+ (0.1 mM). 3. Pressure applications of 1 mM nicotine for 2 s (conditioning pulse) evoked inward currents which faded biexponentially to a steady state level due to receptor desensitization and were accompanied by a sustained increase in [Ca2+]i. Inward currents evoked by subsequent application of brief test pulses of nicotine were depressed but recovered with a time course reciprocal to the decay of the [Ca2+]i transient induced by the conditioning pulse. 4. Omission of intracellular Ca2+ chelators or use of high extracellular Ca2+ solution (10 mM) lengthened recovery of nicotinic AChRs from desensitization while adding BAPTA or EGTA intracellularly had the opposite effect. When the patch pipette contained fluo-3 or no chelators, after establishing whole cell conditions the rate of recovery became progressively longer presumably due to dialysis of endogenous Ca2+ buffers. None of these manipulations of external or internal Ca2+ had any effect on onset or steady state level of desensitization. 5. High spatial resolution imaging of [Ca2+]i in intact cells (in the presence of 0.1 mM Cd2+) showed that its level in the immediate submembrane area decayed at the same rate as in the rest of the cell, indicating that Ca2+ was in a strategic location to modulate (directly or indirectly) AChR desensitization. 6. The present data suggest that desensitized nicotinic AChRs are stabilized in their conformation by raised [Ca2+]i and that this phenomenon retards their recovery to full activity.  相似文献   

3.
We have previously reported that angiotensin II (ANG II) induces oscillations in the cytoplasmic calcium concentration ([Ca2+]i) of pulmonary vascular myocytes. The present work was undertaken to investigate the effect of ANG II in comparison with ATP and caffeine on membrane currents and to explore the relation between these membrane currents and [Ca2+]i. In cells clamped at -60 mV, ANG II (10 microM) or ATP (100 microM) induced an oscillatory inward current. Caffeine (5 mM) induced only one transient inward current. In control conditions, the reversal potential (Erev) of these currents was close to the equilibrium potential for Cl- ions (Ecl = -2.1 mV) and was shifted towards more positive values in low-Cl- solutions. Niflumic acid (10-50 microM) and DIDS (0.25-1 mM) inhibited this inward current. Combined recordings of membrane current and [Ca2+]i by indo-1 microspectrofluorimetry revealed that ANG II- and ATP-induced currents occurred simultaneously with oscillations in [Ca2+]i whereas the caffeine-induced current was accompanied by only one transient increase in [Ca2+]i. Niflumic acid (25 microM) had no effect on agonist-induced [Ca2+]i responses, whereas thapsigargin (1 microM) abolished both membrane current and the [Ca2+]i response. Heparin (5 mg/ml in the pipette solution) inhibited both [Ca2+]i responses and membrane currents induced by ANG II and ATP, but not by caffeine. In pulmonary arterial strips, ANG II-induced contraction was inhibited by niflumic acid (25 microM) or nifedipine (1 microM) to the same extent and the two substances did not have an additive effect. This study demonstrates that, in pulmonary vascular smooth muscle, ANG II, as well as ATP, activate an oscillatory calcium dependent chloride current which is triggered by cyclic increases in [Ca2+]i and that both oscillatory phenomena are primarily IP3-mediated. It is suggested that ANG II-induced oscillatory chloride current could depolarise the cell membrane leading to activation of voltage-operated Ca2+ channels. The resulting Ca2+ influx contributes to the component of ANG II-induced contraction that is equally sensitive to chloride or calcium channel blockade.  相似文献   

4.
In neurosecretory cells of the supraoptic nucleus (SON) of rats, pituitary adenylate cyclase activating polypeptide (PACAP) causes an increase in [Ca2+]i, and stimulates somatodendritic vasopressin (VP) release. In this report, to elucidate the ionic mechanism of the action of PACAP, membrane potentials and ionic currents were measured from SON neurones in slice preparations or from dissociated SON neurones. In the current clamp mode, PACAP depolarized membrane potentials of both phasic and non-phasic neurones and increased the firing rate. Moreover, simultaneous measurements of membrane potentials and [Ca2+]i revealed that the membrane depolarization correlated well with increases in [Ca2+]i. In the voltage-clamp mode, PACAP induced inward currents at a holding potential of -70 or -80 mV in a dose-dependent manner and the time course of the currents was similar to that of the PACAP-induced membrane depolarization. The averaged reversal potential of the PACAP-induced currents obtained from dissociated SON neurones was -33 mV, which was close to the reversal potential of non-selective cation currents in SON neurones. The currents were rapidly and reversibly inhibited by a cation-channel blocker, gadolinium. Analysis of synaptic inputs into SON neurones in slice preparations revealed that PACAP had little or no effects on the frequency of spontaneous excitatory and inhibitory postsynaptic currents. These results suggest that pituitary adenylate cyclase activating polypeptide (PACAP) activates PACAP receptors in the postsynaptic membrane of the supraoptic nucleus (SON) neurones, and that the activation of PACAP receptors leads to opening of non-selective cation channels, depolarization of the membrane potential, and increase in the firing rate in SON neurones. Such mechanisms may account for the PACAP-induced increase in [Ca2+]i and vasopressin (VP) release observed in SON neurones.  相似文献   

5.
We have used the patch clamp technique combined with simultaneous measurement of intracellular Ca2+ to record ionic currents activated by depletion of intracellular Ca(2+)-stores in endothelial cells from human umbilical veins. Two protocols were used to release Ca2+ from intracellular stores, i.e. loading of the cells via the patch pipette with Ins(1,4,5)P3, and extracellular application of thapsigargin. Ins(1,4,5)P3 (10 microM) evoked a transient increase in [Ca2+]i in cells exposed to Ca(2+)-free extracellular solutions. A subsequent reapplication of extracellular Ca2+ induced an elevation of [Ca2+]i. These changes in [Ca2+]i were very reproducible. The concomitant membrane currents were neither correlated in time nor in size with the changes in [Ca2+]i. Similar changes in [Ca2+]i and membrane currents were observed if the Ca(2+)-stores were depleted with thapsigargin. Activation of these currents was prevented and holding currents at -40 mV were small if store depletion was induced in the presence of 50 microM NPPB. This identifies the large currents, which are activated as a consequence of store-depletion, as mechanically activated Cl- currents, which have been described previously [1,2]. Loading the cells with Ins(1,4,5)P3 together with 10 mM BAPTA induced only a very short lasting Ca2+ transient, which was not accompanied by activation of a detectable current, even in a 10 mM Ca(2+)-containing extracellular solution. Also thapsigargin does not activate any membrane current if the pipette solution contains 10 mM BAPTA (ruptured patches). The contribution of Ca(2+)-influx to the membrane current during reapplication of 10 mM extracellular calcium to thapsigargin-pretreated cells was estimated from the first time derivative of the corresponding Ca2+ transients at different holding potentials. These current values showed strong inward rectification, with a maximal amplitude of 1.0 +/- 0.3 pA at -80 mV (n = 8; membrane capacitance 59 +/- 9 pF).(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

6.
The intracellular sodium concentration ([Na+]i) and resting potential (Em) of cultured mouse glomus cells (clustered and isolated) were simultaneously measured with intracellular Na+-sensitive and conventional, KCl-filled, microelectrodes. Results obtained in clustered and isolated cells were similar. During normoxia (PO2 122 Torr), [Na+]i was 12-13 mM corresponding to a Na+ equilibrium potential (ENa) of about 58 mV. Em was about -42 mV. Hypoxia, induced by Na2S2O4 1 mM (PO2 10 Torr), depolarized the cells by about 20 mV, [Na+]i increased by 21 mM and ENa dropped to about 35 mV. One millimolar of CoCl2 depressed, or blocked, the effects of Na2S2O4 on [Na+]i but did not affect hypoxic depolarization. Voltage-clamping at -70 mV, while delivering pulses of different amplitudes, produced only small (about 10 pA) and slow TTX-insensitive inward currents. Fast and large (TTX-sensitive) inward currents were not detected. The cell conductance (measured with voltage ramps) was less than 1 nS. It was not affected by hypoxia but was depressed by cobalt. Voltage ramps elicited small inward currents in control and hypoxic solutions that were much smaller than those induced by barium (presumably enhancing calcium currents). Also, normoxic and hypoxic currents had lower thresholds and their troughs were at more negative voltages than in the presence of Ba2+. All currents were blocked by 1 mM CoCl2 suggesting that, at this concentration, cobalt exerted a nonspecific effect on glomus membrane channels. Hypoxia induced a large [Na+]i increase (presumably through inflow), but very small voltage-gated inward currents. Thus, Na+ increases (inflow) probably occurred by disturbing a Na+/K+ exchange mechanism and not by activation of voltage-gated channels.  相似文献   

7.
The effects of histamine on the intracellular Ca2+ concentration ([Ca2+]i), action potential and membrane currents were assessed in single atrial myocytes prepared from guinea-pigs. Histamine caused a concentration-dependent increase in the [Ca2+]i transient in indol/AM loaded myocytes when stimulated electrically at 0.5 Hz. However, the maximum increase in [Ca2+]i transient produced by histamine was less than 50% of that elicited by isoprenaline. The histamine-induced increase in [Ca2+]i transient was significantly inhibited by chlorpheniramine, but not by cimetidine. Pretreatment with nifedipine nearly completely suppressed the histamine-induced increase in [Ca2+]i transient. Cyclopiazonic acid did not affect the histamine response. In the whole-cell current-clamp mode of the patch-clamp method, both histamine and isoprenaline prolonged action potential duration (APD) in atrial myocytes. In the presence of Co2+ or nifedipine, the isoprenaline-induced APD prolongation was abolished and an APD shortening effect was manifested, while histamine still increased APD. The APD prolongation elicited by histamine was reversed by chlorpheniramine. In the voltage-clamp mode, the histamine-sensitive membrane current was inwardly rectifying and reversed close to the calculated value of the K+ equilibrium potential. Histamine had no apparent effect on L-type Ca2+ current, in contrast to the pronounced effect of isoprenaline. These results indicate that in guinea-pig atrial myocytes stimulation of H1-receptors with histamine does not directly activate Ca2+ channels but causes an elevation of [Ca2+]i transient by increasing Ca2+ influx through the channels during the prolonged repolarization of action potentials resulting from inhibition of the outward K+ current.  相似文献   

8.
Pituitary adenylate cyclase-activating polypeptide (PACAP) has been reported to increase intracellular Ca2+ concentrations ([Ca2+]i) and catecholamine release in adrenal chromaffin cells. We measured [Ca2+]i with fura-2 and recorded ion currents and membrane potentials with the whole cell configuration of the patch-clamp technique to elucidate the mechanism of PACAP-induced [Ca2+]i increase in bovine adrenal chromaffin cells. PACAP caused [Ca2+]i to increase due to Ca2+ release and Ca2+ influx, and this was accompanied by membrane depolarization and inward currents. The Ca2+ release was suppressed by ryanodine, an inhibitor of caffeine-sensitive Ca2+ stores, but was unaffected by cinnarizine, an inhibitor of inositol trisphosphate-induced Ca2+ release. Ca2+ influx and inward currents were both inhibited by replacement of extracellular Na+, and Ca2+ influx was inhibited by nicardipine, an L-type Ca2+ channel blocker, or by staurosporine, a protein kinase C (PKC) inhibitor, but was unaffected by a combination of omega- conotoxin-GVIA, omega-agatoxin-IVA, and omega-conotoxin- MVIIC, blockers of N-, P-, and Q-type Ca2+ channels. Moreover, 1-oleoyl-2-acetyl-sn-glycerol, a PKC activator, induced inward currents and Ca2+ influx. These results indicate that PACAP causes both Ca2+ release, mainly from caffeine-sensitive Ca2+ stores, and Ca2+ influx via L-type Ca2+ channels activated by membrane depolarization that depends on PKC-mediated Na+ influx.  相似文献   

9.
Characterization of mammalian homologues of Drosophila TRP proteins, which induce light-activated Ca2+ conductance in photoreceptors, has been an important clue to understand molecular mechanisms underlying receptor-activated Ca2+ influx in vertebrate cells. We have here isolated cDNA that encodes a novel TRP homologue, TRP5, predominantly expressed in the brain. Recombinant expression of the TRP5 cDNA in human embryonic kidney cells dramatically potentiated extracellular Ca2+-dependent rises of intracellular Ca2+ concentration ([Ca2+]i) evoked by ATP. These [Ca2+]i transients were inhibited by SK&F96365, a blocker of receptor-activated Ca2+ entry, and by La3+. Expression of the TRP5 cDNA, however, did not significantly affect [Ca2+]i transients induced by thapsigargin, an inhibitor of endoplasmic reticulum Ca2+-ATPases. ATP stimulation of TRP5-transfected cells pretreated with thapsigargin to deplete internal Ca2+ stores caused intact extracellular Ca2+-dependent [Ca2+]i transients, whereas ATP suppressed [Ca2+]i in thapsigargin-pretreated control cells. Furthermore, in ATP-stimulated, TRP5-expressing cells, there was no significant correlation between Ca2+ release from the internal Ca2+ store and influx of extracellular Ca2+. Whole-cell mode of patch-clamp recording from TRP5-expressing cells demonstrated that ATP application induced a large inward current in the presence of extracellular Ca2+. Omission of Ca2+ from intrapipette solution abolished the current in TRP5-expressing cells, whereas 10 nM intrapipette Ca2+ was sufficient to support TRP5 activity triggered by ATP receptor stimulation. Permeability ratios estimated from the zero-current potentials of this current were PCa:PNa:PCs = 14.3:1. 5:1. Our findings suggest that TRP5 directs the formation of a Ca2+-selective ion channel activated by receptor stimulation through a pathway that involves Ca2+ but not depletion of Ca2+ store in mammalian cells.  相似文献   

10.
1. We have studied the effects of purinoceptor stimulation on Ca2+ signals in bovine adrenomedullary endothelial cells. [Ca2+]i was determined with the fluorescent probe fura-2 both in population samples and in single, isolated, endothelial cells in primary culture and after subculturing. 2. In endothelial cells, maintained in culture for more than one passage, several purinoceptor agonists elicited clear [Ca2+]i transient peaks that remained in the absence of extracellular Ca2+. Adenosine 5'-triphosphate (ATP) and uridine 5'-triphosphate (UTP) were equipotently active, with EC50 values of 8.5 +/- 0.9 microM and 6.9 +/- 1.5 microM, respectively, whereas 2-methylthioadenosine 5'-triphosphate (2MeSATP), adenosine 5'-(alpha, beta-methylene)triphosphate (alpha, beta-MeATP) and adenosine(5')tetraphospho(5')adenosine (Ap4A) were basically inactive. Adenosine 5'-O-(2-thiodiphosphate) (ADP beta S) was a weak agonist. The apparent potency order was UTP = ATP > ADP beta S > 2MeSATP > alpha, beta-MeATP. 3. Cross-desensitization experiments revealed that UTP or ATP, added sequentially at concentrations of maximal effect, could completely abolish the [Ca2+]i response to the second agonist. ADP beta S exerted only a partial desensitization of the response to maximal ATP, in accordance with its lower potency in raising [Ca2+]i. 4. The effect on [Ca2+]i of 100 microM ATP in subcultured cells was reduced by only 25% with 100 microM suramin pretreatment and was negligibly affected by exposure to 10 microM pyridoxalphosphate-6-azophenyl-2', 4'-disulphonic acid (PPADS). The concentration-effect curve for ATP was not significantly affected by PPADS, but was displaced to the right by a factor of 6.5 by 100 microM suramin. 5. In primary cultures, clear [Ca2+]i responses were elicited by 2MeSATP. Suramin totally and selectively blocked 2MeSATP responses, whereas UTP-evoked [Ca2+]i transients were mainly unaffected by suramin or PPADS. Over 80% of cells tested showed responses to both 2MeSATP and UTP. The [Ca2+]i response to UTP was not desensitized in the presence of 2MeSATP. 6. ATP and UTP stimulated the release of preloaded [3H]-arachidonic acid ([3H]-AA), both in the presence and in the absence of extracellular Ca2+, by approximately 135% with respect to basal levels. Suramin and PPADS enhanced, rather than inhibited, the [3H]-AA releasing effect of ATP by 2.5 times. Suramin also potentiated the effect of the calcium ionophore A23187. 7. These results indicate that endothelial cells from adrenomedullary capillaries co-express both P2Y- and P2U-purinoceptors. P2Y-purinoceptors are lost in culture with the first passage of the cells. The P2U-purinoceptor subtype present in these cells is insensitive to PPADS and thus similar to that found in aortic endothelial cells.  相似文献   

11.
In response to extracellular application of 50 microM ATP, all individual porcine aortic smooth muscle cells respond with rapid rises from basal [Ca2+]i to peak [Ca2+]i within 5 s. The time from stimulus to the peak of the [Ca2+]i response increases with decreasing concentration of ATP. At ATP concentrations of 0.5 microM and below, the time to the [Ca2+]i peak varies more significantly from cell to cell than at higher concentrations, and each cell shows complicated initiation and decay kinetics. For any individual cell, the lag phase before a response decreases with increasing concentration of ATP. An increase in lag time with decreasing ATP concentration is also observed in the absence of extracellular Ca2+, but the lag phase is more pronounced, especially at concentrations of ATP below 0.5 microM. Whole-cell patch-clamp electrophysiology shows that in porcine aortic smooth muscle cells, ATP stimulates an inward current carried mainly by Cl- ion efflux with a time course similar to the [Ca2+]i changes and no detectable current from an ATP-gated cation channel. A simple signal cascade initiation kinetics model, starting with nucleotide receptor activation leading to IP3-mediated Ca2+ release from IP3-sensitive internal stores, fits the data and suggests that the kinetics of the Ca2+ response are dominated by upstream signal cascade components.  相似文献   

12.
The cytoplasmic free calcium concentration ([Ca2+]i) was measured in cultured microglial cells with the Ca2+-sensitive fluorescent dye Fura-2 using a digital imaging system. Stimulation of P2 purinergic receptors by ATP or UTP always evoked a [Ca2+]i elevation. The ATP-induced Ca2+ response involved both Ca2+ influx through ionotropic receptors and Ca2+ release from intracellular pools, whereas UTP selectively stimulated intracellular Ca2+ release. When intracellular Ca2+ release was stimulated in the absence of extracellular Ca2+, the readmission of extracellular Ca2+ caused a large rebound [Ca2+]i increase. Following this rebound, [Ca2+]i did not return to the initial resting level, but remained for long periods of time (up to 20 min), at a new, higher steady-state level. Both the amplitude of the rebound Ca2+ transient and the new plateau level strongly correlated with the degree of intracellular Ca2+ depletion, indicating the activation of a store-operated Ca2+ entry pathway. The elevated steady-state [Ca2+]i level was associated with a significant increase in the plasma membrane permeability to Ca2+, as changes in extracellular Ca2+ were reflected in almost immediate changes of [Ca2+]i. Similarly, blocking plasma-lemmal Ca2+ channels with the non-specific agonist La3+ (50 microM) caused a decrease in [Ca2+]i, despite the continuous presence of Ca2+ ions in the extracellular medium. After the establishment of the new, elevated steady-state [Ca2+]i level, stimulation of P2U metabotropic purinoreceptors did not induce a [Ca2+]i response. In addition, application of either thapsigargin (1 microM) or carbonyl cyanide chlorophenyl hydrazone (10 microM) failed to affect [Ca2+]i. We conclude that the maximal depletion of intracellular Ca2+ stores in mouse brain microglia determines the long-term activation of a plasma membrane Ca2+ entry pathway. This activation appears to be associated with a significant decrease in the capability of the intracellular Ca2+ stores to take up cytosolic Ca2+ once they have been maximally depleted.  相似文献   

13.
During ischemia or hypoxia, alterations in pHi may play a significant role in alteration of vessel wall function. We studied the effects of altering pHi on isometric force and [Ca2+]i in porcine coronary artery. pHi was altered at constant pHo by use of NH4Cl and measured with the fluorescent dye BCECF. [Ca2+]i was monitored with fura 2 and ratiometric fluorescence measurements. Addition of NH4Cl elicited a concentration-dependent (2 to 30 mmol/L) sustained increase in isometric force in unstimulated tissues. In tissues stimulated with KCl (29 mmol/L) or U46619 (1 mumol/L), addition of NH4Cl elicited a rapid but transient decrease followed by a sustained increase in force above the initial stimulated levels. Removal of NH4Cl was associated with a transient decrease and increase followed by a prolonged depression of force and slow recovery to initial levels. Addition of NH4Cl elicited a rapid monotonic increase in pHi and then a slow recovery toward initial levels; washout of NH4Cl led to a rapid acidification followed by recovery. In contrast to the steady state effects of NH4Cl on force, its effects on [Ca2+i were in the opposite direction. During the sustained increase in force elicited by NH4Cl alkalinization, [Ca2+]i was substantially decreased, whereas when force was depressed during the acidification elicited by NH4Cl washout, [Ca2+i was increased to values observed before addition of NH4Cl. The initial transients in force elicited by NH4Cl addition or washout were also associated with opposite changes in [Ca2+]i. Thus, the effects on force of the NH4Cl-induced changes in pHi are associated with changes in the Ca2+ sensitivity of the contractile apparatus rather than mediated through changes in [Ca2+]i.  相似文献   

14.
Inositol 1,4,5-trisphosphate- and caffeine-induced Ca2+ release was examined in neurons isolated from the mollusc Helix pomatia using Ca2+ indicator fura-2 and fluorescent digital-imaging microscopy technique. Extracellular application of caffeine caused a fast and pronounced augmentation of [Ca2+]i whose amplitude and kinetics differ in the centre of the cell and near its membrane. Mean values of caffeine-induced increase of [Ca2+]i were 0.97 +/- 0.11 microM at the periphery and 0.53 +/- 0.13 microM in the centre. The rates of rise and relaxation of caffeine-evoked [Ca2+]i transients were faster near the membrane. Pressure injection of inositol, 1,4,5-trisphosphate into the same neurons produced an abrupt and significant increase of [Ca2+]i in the centre (mean value of inositol 1,4,5-trisphosphate-induced elevation = 0.55 +/- 0.11 microM) while the response was smaller or even absent near the cellular membrane. Inositol 1,4,5-trisphosphate- and caffeine-induced Ca2+ transients did not affect each other. The data obtained indicate that in snail neurons these two calcium pools are not overlapping and at least some part of the caffeine-sensitive store is located close to the cellular membrane and that the inositol 1,4,5-trisphosphate-sensitive one is located in the centre of the cell.  相似文献   

15.
BACKGROUND: Recent experiments in atrial myocytes indicate that withdrawal of cholinergic agonist can directly increase Ca2+ influx via L-type Ca2+ current and stimulate Ca2+ uptake into the sarcoplasmic reticulum (SR), thereby increasing intracellular Ca2+. Overload of cellular Ca2+ within the SR can initiate various types of atrial dysrhythmias. The present study was designed to determine whether withdrawal of acetylcholine (ACh) can elicit Ca2+-induced delayed afterdepolarizations (DADs) in atrial myocytes. METHODS AND RESULTS: A nystatin perforated-patch whole-cell method and fluorescence microscopy (indo 1) were used to measure electrical activities and intracellular free Ca2+ ([Ca2+]i), respectively. Withdrawal of ACh (1 micromol/L) increased action potential duration, shifted plateau voltage toward positive, and generated DADs that initiated spontaneous action potentials. Voltage-clamp analysis revealed that withdrawal of ACh elicited a rebound stimulation of L-type Ca2+ current (I(Ca,L)) (+45%) and Na/Ca exchange current (I(NaCa)) (+16%) and the appearance of transient inward current (I(ti)) and spontaneous [Ca2+]i transients. Each of these changes induced by withdrawal of ACh was abolished by Rp-cAMPs (50 to 100 micromol/L) or H-89 (2 micromol/L), inhibitors of cAMP-dependent protein kinase A. Ryanodine (1 micromol/L) abolished I(NaCa) and the appearance of I(ti) without decreasing the rebound stimulation of I(Ca,L) elicited by withdrawal of ACh. CONCLUSIONS: Withdrawal of ACh can elicit cAMP-mediated stimulation of Ca2+ influx via I(Ca,L) and uptake of SR Ca2+. As a result, cellular Ca2+ overload causes enhanced SR Ca2+ release and the initiation of DADs. These mechanisms may generate triggered and/or spontaneous atrial depolarizations elicited by withdrawal of vagal nerve activity.  相似文献   

16.
Intracellular Ca2+ ([Ca2+]i) and membrane properties were measured in fura-2 dialysed dorsal vagal neurons (DVN) spontaneously active at a frequency of 0.5-5 Hz. [Ca2+]i increased by about 30 nm upon rising spike frequency by more than 200% due to 20-50 pA current pulses or 10 micrometer serotonin. It fell by 30 nm upon block of spiking by current-injection, tetrodotoxin or Ni2+ and also during hyperpolarization due to gamma-aminobutyric acid or opening of adenosine triphosphate (ATP) -sensitive K+ (KATP) channels with diazoxide. KATP channel-mediated hyperpolarizations during anoxia or cyanide produced an initial [Ca2+]i decrease which reversed into a secondary Ca2+ rise by less than 100 nm. Similar moderate rises of [Ca2+]i were observed during block of aerobic metabolism under voltage-clamp as well as in intact cells, loaded with fura-2 AM. The magnitude of the metabolism-related [Ca2+]i transients did not correlate with the amplitude of the KATP channel-mediated outward current. [Ca2+]i did not change during diazoxide-induced or spontaneous activation of KATP outward current observed in 10% of cells after establishing whole-cell recording. Increasing [Ca2+]i with cyclopiazonic acid did not activate KATP channels. [Ca2+]i was not affected upon block of outward current with sulphonylureas, but these KATP channel blockers were effective to reverse inhibition of spike discharge and, thus, the initial [Ca2+]i fall upon spontaneous or diazoxide-, anoxia- and cyanide-induced KATP channel activation. A sulphonylurea-sensitive hyperpolarization and [Ca2+]i fall was also revealed in the early phase of iodoacetate-induced metabolic arrest, whereas after about 20 min, occurrence of a progressive depolarization led to an irreversible rise of [Ca2+]i to more than 1 micrometer. The results indicate that KATP channel activity in DVN is not affected by physiological changes of intracellular Ca2+ and the lack of a major perturbance of Ca2+ homeostasis contributes to their high tolerance to anoxia.  相似文献   

17.
Fluorescence videomicroscopy was used to monitor changes in the cytosolic free Ca2+ concentration ([Ca2+]i) in the mouse muscle cell line C2Cl2 during in vitro myogenesis. Three different patterns of changes in [Ca2+]i were observed: (i) [Ca2+]i oscillations; (ii) faster Ca2+ events confined to subcellular regions (localized [Ca2+]i spikes) and (iii) [Ca2+]i spikes detectable in the entire myotube (global [Ca2+]i spikes). [Ca2+]i oscillations and localized [Ca2+]i spikes were detectable following the appearance of caffeine-sensitivity in differentiating C2Cl2 cells. Global [Ca2+]i spikes appeared later in the process of myogenesis in cells exhibiting coupling between voltage-operated Ca2+ channels and ryanodine receptors. In contrast to [Ca2+]i oscillations and localized [Ca2+]i spikes, the global events immediately stopped when cells were perfused either with a Ca2+-free solution, or a solution with TTX, TEA and verapamil. To explore further the mechanism of the global [Ca2+]i spikes, membrane currents and fluorescence signals were measured simultaneously. These experiments revealed that global [Ca2+]i spikes were correlated with an inward current. Moreover, while the depletion of the Ca2+ stores blocked [Ca2+]i oscillations and localized [Ca2+]i spikes, it only reduced the amplitude of global [Ca2+]i spikes. It is suggested that, during the earlier stages of the myogenesis, spontaneous and repetitive [Ca2+]i changes may be based on cytosolic oscillatory mechanisms. The coupling between voltage-operated Ca2+ channels and ryanodine receptors seems to be the prerequisite for the appearance of global [Ca2+]i spikes triggered by a membrane oscillatory mechanism, which characterizes the later phases of the myogenic process.  相似文献   

18.
The role of sodium-calcium exchanger in calcium homeostasis in Bergmann glial cells in situ was investigated by monitoring cytoplasmic calcium ([Ca2+]i) and sodium ([Na+]i) concentrations. The [Ca2+]i and [Na+]i transients were measured either separately by using fluorescent indicators fura-2 and SBFI, respectively, or simultaneously using the indicators fluo-3 and SBFI. Since the removal of extracellular Na+ induced a relatively small (approximately 50 nM) elevation of [Ca2+]i, the Na+/Ca2+ exchanger seems to play a minor role in regulation of resting [Ca2+]i. In contrast, kainate-triggered [Ca2+]i increase was significantly suppressed by lowering of the extracellular Na+ concentration ([Na+]o). In addition, manipulations with [Na+]o dramatically affected the recovery of the kainate-induced [Ca2+]i transients. Simultaneous recordings of [Ca2+]i and [Na+]i revealed that kainate-evoked [Ca2+]i transients were accompanied with an increase in [Na+]i. Moreover, kainate induced significantly larger [Ca2+]i and smaller [Na+]i transients under current-clamp conditions as compared to those recorded when the membrane voltage was clamped at -70 mV. The above results demonstrate that the Na(+)-Ca2+ exchanger is operative in Bergmann glial cells in situ and is able to modulate dynamically the amplitude and kinetics of [Ca2+]i signals associated with an activation of ionotropic glutamate receptors.  相似文献   

19.
In higher plants changes and oscillations in cytosolic free Ca2+ concentration ([Ca2+]i) are central to hormonal physiology, including that of abscisic acid (ABA), which signals conditions of water stress and alters ion channel activities in guard cells of higher-plant leaves. Such changes in [Ca2+]i are thought to encode for cellular responses to different stimuli, but their origins and functions are poorly understood. Because transients and oscillations in membrane voltage also occur in guard cells and are elicited by hormones, including ABA, we suspected a coupling of [Ca2+]i to voltage and its interaction with ABA. We recorded [Ca2+]i by Fura2 fluorescence ratio imaging and photometry while bringing membrane voltage under experimental control with a two-electrode voltage clamp in intact Vicia guard cells. Free-running oscillations between voltages near -50 mV and -200 mV were associated with oscillations in [Ca2+]i, and, under voltage clamp, equivalent membrane hyperpolarizations caused [Ca2+]i to increase, often in excess of 1 microM, from resting values near 100 nM. Image analysis showed that the voltage stimulus evoked a wave of high [Ca2+]i that spread centripetally from the peripheral cytoplasm within 5-10 s and relaxed over 40-60 s thereafter. The [Ca2+]i increases showed a voltage threshold near -120 mV and were sensitive to external Ca2+ concentration. Substituting Mn2+ for Ca2+ to quench Fura2 fluorescence showed that membrane hyperpolarization triggered a divalent influx. ABA affected the voltage threshold for the [Ca2+]i rise, its amplitude, and its duration. In turn, membrane voltage determined the ability of ABA to raise [Ca2+]i. These results demonstrate a capacity for voltage to evoke [Ca2+]i increases, they point to a dual interaction with ABA in triggering and propagating [Ca2+]i increases, and they implicate a role for voltage in "conditioning" [Ca2+]i signals that regulate ion channels for stomatal function.  相似文献   

20.
BACKGROUND: The site where volatile anesthetics inhibit endothelium-dependent, nitric oxide-mediated vasodilation is unclear. To determine whether anesthetics could limit endothelium-dependent nitric oxide production by inhibiting receptor-mediated increases in cytosolic Ca2+, experiments were performed to see if the inhalational anesthetics halothane, isoflurane, and enflurane affect intracellular Ca2+ ([Ca2+]i) transients induced by the agonists bradykinin and adenosine triphosphate in cultured bovine aortic endothelial cells. METHODS: Bovine aortic endothelial cells, which had been loaded with the fluorescent Ca2+ indicator Fura-2, were added to medium preequilibrated with volatile anesthetic (1.25% and 2.5% for isoflurane, 1.755 and 3.5% for enflurane, and 0.75% and 1.5% for halothane). In Ca(2+)-containing medium, intracellular Ca2+ transients were elicited in response to bradykinin (10 nM and 1 microM) or adenosine triphosphate (1 microM and 100 microM). RESULTS: Both bradykinin and adenosine triphosphate triggered a rapid rise to peak [Ca2+]i followed by a gradual decline to a plateau above the resting level. Although basal [Ca2+]i was unaltered by the anesthetics, both halothane and enflurane, in a dose-dependent manner, depressed the peak and plateau of the [Ca2+]i transient elicited by 10 nM bradykinin, whereas isoflurane had no effect. When [Ca2+]i transients were elicited by 1 microM bradykinin, halothane (1% and 5%) did not alter peak and plateau levels. Halothane and enflurane also decreased [Ca2+]i transients evoked by 1 microM and 100 microM adenosine triphosphate, whereas isoflurane also had no effect in this setting. CONCLUSIONS: Halothane and enflurane, but not isoflurane, inhibit bradykinin- and adenosine triphosphate-stimulated Ca2+ transients in endothelial cells. Limitations of Ca2+ availability to activate constitutive endothelial nitric oxide synthase could allow for part, but not all, of the inhibition of endothelium-dependent nitric oxide-mediated vasodilation by inhalational anesthetics.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号