首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 390 毫秒
1.
开关磁阻电机基于转矩脉动最小化的直接转矩控制技术   总被引:1,自引:0,他引:1  
开关磁阻电机的主要缺点是转矩脉动较大以及振动和噪声比其他调速系统严重。这里将直接转矩控制技术应用到开关磁阻电机中,以转矩脉动最小化为主要控制目标,在此基础上建立了直接转矩控制的仿真模型。仿真及实验研究表明,直接转矩控制技术能够将磁链矢量幅值很好地控制在滞环带内,从而有效地控制转矩脉动,降低电机的振动和噪声。  相似文献   

2.
本文提出了一种新型感应电动机调速系统的线性化解耦控制方法,以定子磁链和电磁转矩作为感应电动机数学模型的输出,给出了感应电动机逆系统的动态方程,利用得到的逆系统将调速系统解耦为电磁转矩和定子磁链两个线性子系统。在此基础上,对整个调速系统进行了综合,给出了调速系统的原理框图,实现了电磁转矩和定子磁链的动态解耦控制。仿真实验验证了理论分析的正确性和控制方案的可行性。  相似文献   

3.
基于永磁同步电动机的转矩和磁链方程,介绍了一种改进的直接转矩控制方法。在该控制方法中,引入了一种新的电压空间矢量调制技术,这种调制技术的特点是把电动机的转速作为开关表的一个输入量,实现了定子电压空间矢量的精确选择,有效的降低了转矩、定子磁链和定子电流的波动。仿真实验结果验证了这种控制方法的有效性。  相似文献   

4.
朱国昕 《变频器世界》2012,(5):64-66,90
针对永磁同步电动机直接转矩控制系统转矩和定子磁链脉动问题,采用电压空间矢量脉宽调制(SVPWM)的永磁同步电动机直接转矩控制方法。根据在每一个控制周期内,计算出参考磁链和所估计磁链的偏差,选择相邻非零矢量和零矢量,并精确地计算出各自的作用时间,然后利用线性组合法将其合成为新的电压矢量。仿真结果表明,所提出的控制方案是有效的,明显地改善转矩和磁链脉动,并且有很好的动态和稳态性能。  相似文献   

5.
文章针对传统定磁链双闭环DTC调速系统稳态时定子电流幅值较大、电机铜耗增加的问题,提出了变磁链给定的解决方案,建立了变磁链三闭环DTC调速系统。仿真结果证明,此调速系统动、静态性能良好,既能充分抑制SRM的转矩脉动,又能在稳态时降低定子电流的幅值,解决了电机高速时铜耗较大的问题。另外,针对变磁链三闭环DTC调速系统控制参数复杂,实时性要求高的特点,文章将BP神经网络PID控制器与传统PI控制器复合,构成了BP-PI控制器。仿真表明,BP-PI控制器有效克服了单一神经网络DTC控制器存在的缺陷,动、静态性能明显优于传统PI调节器,显著提高了调速系统的自适应性和鲁棒性。  相似文献   

6.
直接转矩控制具有控制简单、动态响应迅速、对参数变化鲁棒性强的特点,因此得到了广泛的应用。在传统的异步电动机直接转矩控制系统中,存在电压空间矢量对定子磁链幅值和磁通角的影响,特别是低速时系统脉动大。针对此问题,文章提出了一种的新的控制方法,该方法将磁链区间细分控制与电压矢量合成结合在一起,并通过引入模糊控制算法进一步提高了转矩响应时间,且减小了转矩脉动。仿真结果表明,本控制方法可以大大减小转矩脉动,具有较好的动静态性能。  相似文献   

7.
针对传统的直接转矩控制(DTC)出现的开关频率不恒定,磁链和转矩脉动大的问题,提出一种基于空间矢量调制的直接转矩控制(SVM-DTC)方法。该方法集合了直接转矩控制响应快、矢量控制连续平滑的优点,以永磁同步电机(PMSM)数学模型为基础,建立转矩、磁链双闭环PI控制回路。采用空间电压矢量调制策略,将转矩和磁链作为控制量。仿真结果表明,相对于传统的直接转矩控制,基于空间矢量调制的直接转矩控制方案的开关频率恒定,转矩、磁链脉动小,系统具有良好的动、静态性能,验证了该方法的可行性和有效性。  相似文献   

8.
《信息技术》2017,(12):41-46
针对无轴承异步电机(Bearingless Induction Motor,BIM)传统直接转矩控制中转矩脉动大,悬浮性能不佳等问题,提出了一种基于滑模变结构的直接转矩控制方法 (SMVS-DTC)。首先根据转矩误差和磁链误差构造出相应的滑模切换面,然后采用指数趋近律设计了直接转矩控制器。在此基础上对所提方法进行了仿真和实验研究。仿真和实验结果表明,该方法有效地减小了转矩脉动和磁链脉动,并且提高了BIM转速动态响应和稳定悬浮性能。  相似文献   

9.
针对直接转矩控制(DTC)技术中采用的传统滞环控制存在转矩及电流脉动大,过电压扇区时磁链轨迹畸变的缺点,提出一种基于定子磁链矢量预测的直接转矩控制方法。首先,根据磁链和转矩的偏差,预测出下一个控制周期的磁链矢量;然后,用预测磁链矢量减去当前的磁链矢量,得到需要加在电机定子上的电压矢量,以补偿当前的偏差。通过仿真说明了改进的系统抑制了磁链和转矩脉动,改善了电流波形,抑制了谐波,具有较好的动静态性能。  相似文献   

10.
永磁直驱风力发电机传统直接转矩控制(DTC)通过查表法选择固定电压矢量来控制定子磁链和电磁转矩,导致磁链和转矩的双重控制要求不能同时兼顾,造成磁链和转矩脉动过大。针对传统DTC的不足,研究了一种永磁直驱风力发电机基于定子磁链预测的空间矢量脉宽调制(SVPWM)DTC方法,通过对下一个控制周期磁链矢量的预测计算需要补偿的电压矢量,并引入SVPWM模块代替查表法来合成该电压矢量。仿真和实验结果表明,此方案能明显降低磁链和转矩脉动,改善永磁直驱风力发电系统的控制性能。  相似文献   

11.
A new instantaneous torque-control strategy is presented for high-performance control of a permanent magnet (PM) synchronous motor. In order to deal with the torque pulsating problem of a PM synchronous motor in a low-speed region, new torque estimation and control techniques are proposed. The linkage flux of a PM synchronous motor is estimated using a model reference adaptive system technique, and the developed torque is instantaneously controlled by the proposed torque controller combining a variable structure control (VSC) with a space-vector pulse-width modulation (PWM). The proposed control provides the advantage of reducing the torque pulsation caused by the nonsinusoidal flux distribution. This control strategy is applied to the high-torque PM synchronous motor drive system for direct-drive applications and implemented by using a software of the digital signal processor (DSP) TMS320C30. The simulations and experiments are carried out for this system, and the results demonstrate the effectiveness of the proposed control  相似文献   

12.
This paper presents a robust speed-control strategy using a Takagi–Sugeno fuzzy model for interior permanent magnet synchronous motor (IPMSM) drives. The sufficient conditions of linear matrix inequalities, which can guarantee the existence of the fuzzy controller gains, are derived from a common quadratic Lyapunov function. Moreover, the maximum torque per ampere control is incorporated to improve the torque production in the constant torque region and the efficiency of the IPMSM drive. The global stability of an observer-based control system is analytically proven. Simulations and experiments are conducted to demonstrate the feasibility of the proposed approach through a prototype IPMSM drive system. Consequently, the proposed fuzzy control methodology can achieve less steady-state error and less sensitivity than the conventional feedback linearisation control method under motor parameter variations and external disturbances.  相似文献   

13.
Sensorless torque control of SyncRel motor drives   总被引:1,自引:0,他引:1  
This paper describes a direct self-control (DSC) scheme for synchronous reluctance motor drives. The presented DSC scheme develops a new torque control methodology that does not require any position transducer to synchronize the stator current vector with the rotor. Such a control strategy differs from the conventional DSC approach in order to fit some specific requirements of synchronous reluctance (SyncRel) machines. First, torque and rotor position are controlled instead of torque and stator flux as in a conventional DSC scheme. Second, the operating sector is selected according to the actual position of the current vector rather than the position of the stator flux. The proposed methodology allows simplifying implementation of the torque control on SyncRel drives and reducing the global cost for medium-performance electric drives. Simulations and experimental tests on a 1.5-kW motor drive are provided to evaluate the consistency and the performance of the proposed control technique  相似文献   

14.
A family of variable-structure controllers for induction machine drives is presented, in which the principles of direct torque control (DTC), variable-structure control (VSC), and space-vector pulsewidth modulation are combined to ensure high-performance operation, both in the steady state and under transient conditions. Three new VSC schemes are designed following the DTC voltage-control-based philosophy. These provide robust, fast, and accurate torque and flux control, without the penalty of high chattering. Comparative results demonstrate that proposed techniques preserve the DTC transient merits, while the steady-state behavior is significantly improved. Experimental results prove the strong robustness, accuracy, quickness, and low-ripple sensor-less operation of a drive that uses the new schemes.  相似文献   

15.
A novel CSI-fed induction motor drive   总被引:1,自引:0,他引:1  
Current source inverter (CSI) fed drives are employed in high power applications. The conventional CSI drives suffer from drawbacks such as harmonic resonance, unstable operation at low speed ranges, and torque pulsation. This paper presents a novel CSI drive which overcomes all these drawbacks and results in sinusoidal motor voltage and current even with CSI switching at fundamental frequency. The proposed CSI drive uses a three-level inverter as an active filter across motor terminals replacing the bulky ac capacitors used in the conventional drive. A sensorless vector controlled CSI drive based on proposed configuration is developed. The simulation and experimental results are presented. Experimental results show that the proposed drive has stable operation even at low speeds. Comparative results show that the proposed CSI drive has improved torque ripple compared to the conventional configuration.  相似文献   

16.
In this paper, a small signal model of permanent magnet synchronous machines is developed which includes both components of torque, i.e., magnet torque and reluctance torque. The effects of flux variations on the torque are analyzed by the use of the developed model. The off-line torque compensation method proposed for induction machines is then adapted to permanent magnet motor drives to achieve a constant torque, variable flux operation of the drives. A sensitivity analysis is performed to show that the off-line method is influenced considerably by machine parameter variations. Therefore the concept of forced compensation is introduced and an on-line torque compensation controller is proposed. Simulation results are presented to show the effectiveness of the proposed controller. An experimental vector controlled permanent magnet motor drive including the on-line torque compensation controller is implemented based on a TMS320C31 DSP to evaluate the method. The experimental results also confirm a desirable variable flux control of the motor drive under constant torque operation  相似文献   

17.
This article proposes a robust fuzzy neural network sliding mode control (FNNSMC) law for interior permanent magnet synchronous motor (IPMSM) drives. The proposed control strategy not only guarantees accurate and fast command speed tracking but also it ensures the robustness to system uncertainties and sudden speed and load changes. The proposed speed controller encompasses three control terms: a decoupling control term which compensates for nonlinear coupling factors using nominal parameters, a fuzzy neural network (FNN) control term which approximates the ideal control components and a sliding mode control (SMC) term which is proposed to compensate for the errors of that approximation. Next, an online FNN training methodology, which is developed using the Lyapunov stability theorem and the gradient descent method, is proposed to enhance the learning capability of the FNN. Moreover, the maximum torque per ampere (MTPA) control is incorporated to maximise the torque generation in the constant torque region and increase the efficiency of the IPMSM drives. To verify the effectiveness of the proposed robust FNNSMC, simulations and experiments are performed by using MATLAB/Simulink platform and a TI TMS320F28335 DSP on a prototype IPMSM drive setup, respectively. Finally, the simulated and experimental results indicate that the proposed design scheme can achieve much better control performances (e.g. more rapid transient response and smaller steady-state error) when compared to the conventional SMC method, especially in the case that there exist system uncertainties.  相似文献   

18.
The operational envelope of electrical machines is limited by the maximum permissible power loss of the machine at any given speed. The control and dynamics of the permanent-magnet synchronous motor (PMSM) drive operating with a maximum power loss versus speed profile is proposed in this paper. The proposed operational strategy is modeled and analyzed. Its comparison to the conventional strategy of limiting current and power to rated values demonstrates the superiority of the proposed scheme. The implementation of the proposed strategy is developed. It is achieved with an outer power loss feedback control loop. This has the advantage of retrofitting the present PMSM drives with the least amount of software/hardware effort. The PMSM drives in this case then can use the existing controllers to implement any torque control criteria, such as constant torque angle, unity power factor, constant air-gap flux linkages, maximum torque per unit current, or maximum-efficiency operation. Experimental verification of the new operational strategy is provided. The concepts presented in this paper can be applied to all other types of motor drives  相似文献   

19.
In this paper, a dead-beat type digital controller has been introduced to overcome the problems of a conventional direct torque controller. The proposed induction motor drive with a digital dead-beat controller shows good transient response and negligible steady-state error even at a low switching frequency, which is needed for high power machines used for transportation. Including the rotor dynamics, the stability condition and steady-state error of the proposed control system have been examined in the z-plane. In addition, the good performance has been verified through the simulation and experiment. The flux and torque controllers have been designed with only stator voltage equations in the stator flux reference frame in order to take advantages of the direct torque control. Therefore, the proposed flux and torque controllers have simple forms and can be easily designed and implemented.  相似文献   

20.
This paper investigates the operation of a direct torque controlled drive when operating under transient conditions and when operating in overmodulation conditions or in the “transition region” to six-step operation. The direct torque control is a dead-beat control of the torque and flux magnitude. In the steady-state, the stator voltage vector which drives the torque and flux to the reference value is calculated during each fixed switching period. Under transient or overmodulation conditions, an alternative switching algorithm must be used since dead-beat control is no longer possible. Two alternatives are presented for operation in overmodulation. The first involves a determination of the switching state a priori, and calculating the duty cycle for each phase based on the torque and flux error. A much simpler scheme is presented which utilizes the voltage reference vector from the direct torque control algorithm. This scheme, although not resulting in dead-beat control, is shown to provide very satisfactory performance in overmodulation. The direct torque control method shows great promise for light traction applications where a large quasi-constant power region is required. The scheme operates very satisfactorily in overmodulation, compared with existing current regulated PWM-based schemes, due to the fact that the voltage space vectors are directly controlled. A complete experimental evaluation of the proposed scheme operating in the transition region is also given  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号