首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 343 毫秒
1.
《Building and Environment》2001,36(6):753-762
A nodal model has been developed to represent room heat transfer in displacement ventilation and chilled ceiling systems. The model uses precalculated air flow rates to predict the air-temperature distribution and the division of the cooling load between the ventilation air and the chilled ceiling. The air movements in the plumes and the rest of the room are represented separately using a network of 10 air nodes. The values of the capacity rate parameters are calculated by solving the heat and mass balance equations for each node using measured temperatures as inputs. Correlations between parameter values for a range of cooling loads and supply air flow rates are presented.  相似文献   

2.
冷板辐射加置换通风空词系统在保证室内环境的前提下比常规全空气空调系统节能,但在天气湿热的香港地区应用会出现冷板凝露现象,且采用置换通风方式,风量有限从而影响热舒适性.本文将干式风机盘管系统与独立除湿通风系统组合应用于香港地区办公楼,干式风机盘管系统处理室内显热负荷,独立除湿通风系统承担室内湿负荷和室外全热负荷.采用EnergyPlus软件模拟分析了该空调系统在香港地区某办公楼中的使用性能,结果表明该系统能很好地控制室内温、湿度,特别是湿度,与常规全空气空调系统相比,全年节能达10.3%.  相似文献   

3.
《Building and Environment》2001,36(7):891-899
In the modern office environment there are numerous heat generating equipment, heat loads from solar radiation and heat produced by people. The loads will often exceed the load the ventilation system can cope with. To meet this demand on extra cooling capacity the commercial market provides cooling ceiling panels and chilled beams. A chilled beam is a source of natural convection, creating a flow, vulnerable to disturbances, of cold air into the occupied zone. Experiments have been conducted in a mock up of an office room; qualitative information has been obtained by visualisation. Instantaneous velocity profiles of the airflow generated by the chilled beam has been registered. In addition, the temperature field below the chilled beam has been measured with a whole field measuring technique. The results show that the airflow from the chilled beam has behaviour similar to a two-dimensional plume but exhibits strong oscillation both sideways and along the chilled beam. These oscillations (intermittence) might cause a sensation of draught but in order to clarify this further investigations are required. Furthermore, airflow generated by heat sources in the room may reverse the flow generated by the chilled beam.  相似文献   

4.
分析计算了采用不同空气换热器组合方案时CC/DV系统和CC/MV系统的新风能耗,指出两个空气热回收装置组合使用可以消除新风再热能耗,但在夏季湿热地区,排风潜热回收比消除新风再热能耗更重要,应尽可能使用全热空气换热器。  相似文献   

5.
Experimental investigation of heat transfer during night-time ventilation   总被引:2,自引:0,他引:2  
Night-time ventilation is seen as a promising approach for energy efficient cooling of buildings. However, uncertainties in the prediction of thermal comfort restrain architects and engineers from applying this technique. One parameter essentially affecting the performance of night-time ventilation is the heat transfer at the internal room surfaces. Increased convection is expected due to high air flow rates and the possibility of a cold air jet flowing along the ceiling, but the magnitude of these effects is hard to predict. In order to improve the predictability, heat transfer during night-time ventilation in case of mixing and displacement ventilation has been investigated in a full scale test room. The results show that for low air flow rates displacement ventilation is more efficient than mixing ventilation. For higher air flow rates the air jet flowing along the ceiling has a significant effect, and mixing ventilation becomes more efficient. A design chart to estimate the performance of night-time cooling during an early stage of building design is proposed.  相似文献   

6.
近年来置换通风技术逐步推广运用到各个领域.目前比较常用的是冷地板或者冷顶板分别与置换通风相结合.本文以CFD模型为基础,针对这种带有冷地面(顶板)的置换通风系统提出了一种数据回归方程的设计准则,同时就三种空调方式中风系统的供冷能力以及所能达到的热舒适程度等问题进行对比分析.  相似文献   

7.
The Centers for Disease Control and Prevention has recommended the use of downward ventilation systems in isolation rooms to reduce the risk of cross-infection from airborne transmissible diseases. The expected airflow pattern of a downward ventilation design would supply cooler and slightly heavier clean air from a ceiling diffuser to push down contaminants, which would then be removed via outlets at floor level. A “laminar” (strictly speaking, unidirectional) flow is expected to be produced to avoid flow mixing and thus reduce cross-infection risk. Experiments were carried out in a full-scale experimental hospital ward with a downward ventilation system to investigate the possibility of applying downward ventilation in a general hospital ward. Two life-sized breathing thermal manikins were used to simulate a source patient and a receiving patient. Computation fluid dynamics was also used to investigate the airflow pattern and pollutant dispersion in the test ward. Based on both experimental and numerical results, the laminar airflow pattern was shown to be impossible to achieve due to turbulent flow mixing and flow entrainment into the supply air stream. The thermal plumes produced above people were found to induce flow mixing. We also studied the effects of the locations of the supply and extraction openings on both the flow pattern and pollutant exposure level in the occupied zone. A number of practical recommendations are suggested.  相似文献   

8.
In heating mode, fresh air is still essential for a chilled panel system in order to ensure the indoor air quality. In this paper, a chilled ceiling panel system was designed and built in a typical office room. The thermal environment and thermal comfort in the room were fully measured and evaluated by using the Fanger's PMV-PPD model and the standard of ISO 7730 respectively, when room was heated in two modes, one of which is the chilled panel heating mode and the other of which is the combined heating mode of chilled panel and supply air. The research results indicate that in the combined mode, ceiling ventilation improves the general thermal comfort and reduces the risk of local discomfort. Under the condition of same general thermal comfort, the heating supply upper limit of chilled panel can be increased by 12.3% because of air mixing effect caused by introduction of air ventilation.  相似文献   

9.
Passive chilled beams are often used to provide cooling or additional cooling when the ventilation system cannot cope with the whole cooling load. The advantage of passive cooling is that it is a silent cooling. Often the chilled beams are installed above a false ceiling and thereby the room is subdivided into two compartments. From the chilled beam a plume is generated. Make-up air (return air) needs to flow into the upper compartment to substitute the airflow generated by the chilled beam. Therefore openings for this purpose are installed in the false ceiling. Small openings constitute a resistance to the flow and the locations of the openings affect the flow pattern. The overall performance was studied in a mock-up of a real office by changing both the size and position of the openings for the make-up air. A uniform heating source was arranged by covering the floor with a heating foil. The best location and size of the openings were explored by both recording the heat absorbed by the beam and the temperature in the room. Minimum temperature attained in the room is the signature of the most efficient cooling. To achieve efficient cooling with a uniform floor-based heating source, two conditions must be fulfilled: a) the return opening area must be at least equal to the horizontal area of the chilled beam; b) the return air openings must be located at the perimeter of the room.  相似文献   

10.
文中介绍了置换通风和冷却顶板相结合系统的基本原理及该系统对改善室内空气品质的作用,论述了各种参数对人体热舒适性的影响。  相似文献   

11.
利用计算流体力学(CFD)方法,对上置置换通风-顶板辐射供冷复合空调办公建筑室内采用不同气流组织方式的通风效果进行了模拟研究,分析比较了气流组织特性指标--温度不均匀系数k1、速度不均匀系数ku空气分布特性指数ADPI及温度效率ηt等,给出了送、排风口适宜的上置安装位置.并从舒适性、供冷情况、竖直温度梯度以及温度、速度场分布等方面与传统置换通风.顶板辐射供冷复合空调系统进行了比较,指明了这种新型空调模式可行性、优点及不足.  相似文献   

12.
This paper expands Ghaddar et al. [N. Ghaddar, K. Ghali, R. Saadeh, A. Keblawi, Design charts for combined chilled ceiling displacement ventilation system (1438-RP), ASHRAE Transactions, 143 (2) (2008) 574-587] design charts of combined chilled ceiling (CC) displacement ventilation (DV) system to operating sensible load ranges from 40 W/m2 to 100 W/m2. It develops a global correlation of system load and operational parameters, with comfort measured by vertical temperature gradient and indoor air quality measured by the stratification height. The correlations are used for a known transient load profile in generating optimal settings of the CC/DV system operational parameters and associated energy consumption.An example is illustrated to show how the correlation could be used to size the system and to provide optimized control of the CC/DV system operation at low computational cost. Results of the current model are compared to the published case study of an optimized operation based on transient simulations of the space thermal model to achieve minimum operation cost [M. Mossolly, N. Ghaddar, K. Ghali, L. Jensen, Optimized operation of combined chilled ceiling displacement ventilation system using genetic algorithm, ASHRAE Transactions, 143 (2) (2008) 541-554]. The design correlations resulted in good agreement with published data (within 3% error in energy consumption and average 6% error in predictions of comfort and stratification height) at 1/4 of the computational time. The presented methodology provides an alternative for using the correlation for supervisory online controllers for the CC/DV system based on physically derived correlations.  相似文献   

13.
《Energy and Buildings》2002,34(6):573-579
The current design standard BS EN ISO7730 [Moderate thermal environments—determination of the PMV and PPD indices and specification of the conditions for thermal comfort, International Standards Organisation (1995)] is based upon the work of Fanger, and essentially comprises a steady-state human heat balance model that leads to a prediction of the sensation of human thermal comfort for a given set of thermal conditions. The model was derived from laboratory-based measurements conducted in the mid-1960s in relatively ‘conventional’ environments. However, a chilled ceiling operated in combination with displacement ventilation represents a more sophisticated environment as compared with the original conditions in which the Fanger model was derived. This raised a question about the applicability of the current standard when designing for thermal comfort in offices equipped with chilled ceiling/displacement ventilation systems. This paper presents findings from an EPSRC-funded study that sought to answer the above question. Human test subjects (184 in total) carried out sedentary office-type work in a well-controlled environmental test room that simulated an office fitted with the above system. Measurements of environmental variables were taken at a number of locations near the subjects, each of whom wore a typical office clothing ensemble. The reported thermal comfort sensations were compared with values predicted from BS EN ISO7730 over a range of system operating conditions. It was shown that the current standard BS EN ISO7730 may be used, without modification, when designing for the thermal comfort of sedentary workers in offices equipped with chilled ceiling/displacement ventilation systems. These findings are interpreted within the context of a proposed modification to thermal comfort design standards that includes adaptive effects, and the influence of BS EN ISO7730 on the development of other radiant surface/displacement ventilation configurations is discussed.  相似文献   

14.
A model for displacement ventilation system based on plume rise of single point heat source was developed. The errors for temperature gradient ratio were less than 6% in most cases. Errors for temperature gradient and displacement zone height were relatively higher (up to 28.1%) which might be due to the derivation of the parameters from experimental data. Still, the errors were lower than those from design model/method of some other workers (68.5% for the temperature gradient ratio and 15.7% for the temperature difference between the supply air and at 0.1 m above floor level). With a room height of 2.4 m (common for office in Hong Kong) and design room temperature 25.5 °C defined at 1.1 m above floor level under the normal load to air flow ratio of 12,000 W/m3/s (typical values for sub-tropical region) and minimum supply temperature of 18 °C, there existed a zone capacity range from 1000 to 5000 W that stand alone operation displacement ventilation system was feasible and that the displacement zone height (minimum 2.2 m) was above normal breathing level. The feasible zone capacity range diminished with decrease in design room temperature and/or room height. In this case, the load to air flow ratio had to be reduced, resulting in a higher flow rate when compared to a mixing ventilation system, or an auxiliary cooling facility such as a chilled ceiling had to be used.  相似文献   

15.
《Energy and Buildings》2006,38(3):163-173
Building airflow, thermal, and contaminant simulation programs need accurate models for the surface convective boundary conditions. This is, especially, the case for displacement ventilation (DV) systems, where convective buoyancy forces at room surfaces significantly affect the airflow pattern and temperature and contaminant distributions. Nevertheless, for DV, as a relatively new ventilation system, the convective correlations are adopted from more traditional mixing ventilation correlations, or non-existent. In this study, the existing recommended correlations are validated in a full-scale experimental facility representing an office space. In addition, new correlations are developed for floor surfaces because the current literature does not provide necessary correlations, even though, the floor surface is responsible for >50% of the total convective heat transfer at the envelope. The convective correlations are typically functions of a surface-air temperature difference, airflow parameters, and characteristic room dimensions. Validation results show that the floor convection correlations expressed as a function of volume flow rate are much stronger than the correlations expressed as a function of a temperature difference between the surface and local air. Consequently, the new convection correlation for floor surfaces is a function of the number of hourly room air changes (ACH). This correlation also takes into account buoyant effects from local floor heat patches. Experimental data show that the existing correlation can be successfully applied to vertical and ceiling surfaces in spaces with DV diffuser(s). Overall, the new and the existing convection correlations are tabulated for use in building simulation programs, such as annual energy analyses or computational fluid dynamics.  相似文献   

16.
Different types of heating, ventilation, and air-conditioning (HVAC) systems consume different amounts of energy yet they deliver similar levels of acceptable indoor air quality (IAQ) and thermal comfort. It is desirable to provide buildings with an optimal HVAC system to create the best IAQ and thermal comfort with minimum energy consumption. In this paper, a combined system of chilled ceiling, displacement ventilation and desiccant dehumidification is designed and applied for space conditioning in a hot and humid climate. IAQ, thermal comfort, and energy saving potential of the combined system are estimated using a mathematical model of the system described in this paper. To confirm the feasibility of the combined system in a hot and humid climate, like China, and to evaluate the system performance, the mathematical model simulates an office building in Beijing and estimates IAQ, thermal comfort and energy consumption. We conclude that in comparison with a conventional all-air system the combined system saves 8.2% of total primary energy consumption in addition to achieving better IAQ and thermal comfort. Chilled ceiling, displacement ventilation and desiccant dehumidification respond consistently to cooling source demand and complement each other on indoor comfort and air quality. It is feasible to combine the three technologies for space conditioning of office building in a hot and humid climate.  相似文献   

17.
Schools may be poorly ventilated and may contain furry pet allergens, particles and microorganisms. We studied health effects when changing from mixing ceiling ventilation to two types of displacement ventilation, front ventilation system (FVS) and floor master system (FMS). The study included pupils in three elementary school classes (N = 61), all with floor heating. One class received blinded interventions; the two others were unchanged (controls). Ventilation flow and supply air temperature was kept constant. The medical investigation included tear film stability (BUT), nasal patency and a questionnaire containing rating scales. When changing from mixing ventilation to FVS, the pupils (N = 26) perceived better air quality (P = 0.006) and less dyspnoea (P = 0.007) as compared to controls (N = 35), and BUT was improved (P = 0.03). At desk level, mean CO(2) was reduced from 867 to 655 ppm. Formaldehyde and viable bacteria were numerically lower, while total bacteria and molds were higher with displacement ventilation. There was no difference in symptoms or signs when changing from FVS to FMS. Cat (Der p1), dog (Can f1) and horse allergen (Equ cx) were common in air at all conditions. In conclusion, displacement ventilation may have certain positive health effects among pupils, as compared to conventional mixing ceiling systems. PRACTICAL IMPLICATIONS: Displacement ventilation may be a suitable ventilation principle for achieving good indoor environment in classrooms. The type of supply air diffuser does not seem to be of major importance. The combination of floor heating and displacement ventilation can be a useful way of avoiding the previously described problem of thermal discomfort.  相似文献   

18.
A passive chilled beam is a source of natural convection, creating a flow of cold air directly into the occupied zone. Experiments were conducted in a mock-up of an office room to study the air velocities in the occupied spaces. In addition, velocity profiles are registered when underneath heat loads exist and the cool and warm air flows interact. Experimental laboratory study revealed that in the case of the underneath heat gains, even no upward plume was generated and the dummy only acted as a flow obstacle, having a significant effect on the velocity profile. Furthermore, in an actual occupied office environment, the thermal plumes and the supply air diffuser mixed effectively the whole air volume. The maximum air velocity measured was still below 0.25 m/s with the extremely high heat gain of 164 W/m2. The results demonstrate that analysis methods were the interaction of convection flow and jet are not taken into account could not accurately describe air movement and draught risk in the occupied room space.  相似文献   

19.
A study was conducted into the ventilation effectiveness of a ventilation system within a public transport interchange (PTI) in Hong Kong. A computational fluid dynamics (CFD), steady state computational model of the PTI was used to investigate and predict the typical pollutant emission pattern for buses. In Hong Kong, the displacement ventilation (DV) scheme is often employed for the PTI. The numerical simulation investigates the effectiveness of the DV system in removing pollutants from the occupied zone. An alternative model is proposed where the supply is located at the ceiling and the exhausts are located at the lower part of the columns. It was found that both systems could adequately ventilate the PTI; however, the ceiling based air supply system is able to provide improved thermal comfort and indoor air quality (IAQ).  相似文献   

20.
李鹏程 《重庆建筑》2010,9(9):19-22,32
介绍了南坪中心交通枢纽工程的空调通风及防排烟系统设计。采用了多项空调节能措施:冷冻水一次泵变频系统;过渡季节全新风设计并采用新风通风降温的焓值控制;主机采用蒸发器变流量机组等。防排烟系统和平时通风相结合。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号