首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A torque ripple reduction technique of direct torque control (DTC) for high power induction motors driven by three-level inverters with the inverter switching frequency limited around 0.5-1 kHz level is presented. It is noted that conventional two-level DTC algorithms to reduce torque ripple are devised for applications with relatively high switching frequency above 2-3 kHz and cannot accomplish satisfactory torque ripple reduction for three-level inverter systems with such lower switching frequencies. A new DTC algorithm, especially for low switching frequency inverter system, illustrates quite reduced torque ripple characteristics all over the operating speed region. Simulation and experimental results show effectiveness of the proposed control algorithm  相似文献   

2.
传统的永磁同步电机直接转矩控制方法转矩响应速度快,但转矩脉动大、电流脉动大、开关频率不固定。为此,本文在分析了面贴式永磁同步电机数学模型的基础上,提出一种基于改进DTC-SVM的空间矢量脉宽调制直接转矩控制系统。提出基于Simulink的DTC-SVM伺服系统仿真模型。仿真结果表明,整个系统既保持了传统直接转矩控制的响应速度快的优点,又具有定子电流波形畸变小,转矩脉动小,系统工作稳定,抗干扰性能强的优点。  相似文献   

3.
给出了永磁同步电机直接转矩控制的系统结构,提出了直接转矩控制技术与变流器软开关技术相结合的方法.电机控制系统综合了直接转矩控制快速特性和软开关的低开关损耗特性,以提高电力电子器件开关频率从而减小永磁同步电机的转矩脉动,最后给出了控制系统的计算机仿真.  相似文献   

4.
Band-constrained technique for direct torque control of induction motor   总被引:1,自引:0,他引:1  
In this paper, a novel technique for the direct torque control (DTC) of an induction motor is proposed, which overcomes the trouble of high torque ripple afflicting the conventional DTC technique. With the novel technique, the inverter voltage vector selected from the switching table is applied for the time interval needed by the torque to reach the upper (or the lower) limit of the band, where the time interval is calculated from a suitable modeling of the torque dynamics. By this approach, the control system emulates the operation of a torque hysteresis controller of analog type since the application time of the inverter voltage vector is dictated by the allowed torque excursion and not by the sampling period. It is shown by experimental results that the technique yields a considerable reduction of the torque ripple. A further and ultimate reduction is obtained by compensating for the delay inherent in the discrete-time operation of the control system. The outcome is that the torque ripple of the motor is constrained within the hysteresis band of the torque controller, for a band of customary value. An ancillary merit of the technique is the almost full elimination of the average torque error inherent in the conventional technique. If the hysteresis band is shrunk, the torque ripple is bound to swing out the band limits. Under this circumstance, an extension of the technique is developed, which helps keep the torque ripple at minimum. To assess the characteristics of the proposed DTC technique, the following quantities: average torque error, rms value of the torque ripple, and inverter switching frequency are measured for different stator flux angular speeds and hysteresis bands of the torque and flux controllers. As a comparison, the same quantities are given for the conventional DTC technique.  相似文献   

5.
A new strategy for direct torque control with imposed switching frequency (DiCoIF) is proposed. This strategy was specially designed to operate with a multicell (flying capacitors) inverter with any number of levels, which means it can also be used for standard two-level inverters. This approach combines the well known advantages of the multicell. inverter with those of a direct torque controlled (DTC) based strategy. It is shown that the multicell topology presents enough degrees of freedom to control both torque and flux with very low ripple and high dynamics on one hand, and to impose the switching frequency and the capacitors voltage balance on the other hand. Experimental and simulation results, obtained with a standard two-level inverter and with a four-level multicell inverter, are presented and discussed. Finally, a comparative analysis either with the classical DTC and field oriented techniques is carried out  相似文献   

6.
This paper presents a hybrid cascaded H-bridge multilevel motor drive direct torque control (DTC) scheme for electric vehicles (EVs) or hybrid EVs. The control method is based on DTC operating principles. The stator voltage vector reference is computed from the stator flux and torque errors imposed by the flux and torque controllers. This voltage reference is then generated using a hybrid cascaded H-bridge multilevel inverter, where each phase of the inverter can be implemented using a dc source, which would be available from fuel cells, batteries, or ultracapacitors. This inverter provides nearly sinusoidal voltages with very low distortion, even without filtering, using fewer switching devices. In addition, the multilevel inverter can generate a high and fixed switching frequency output voltage with fewer switching losses, since only the small power cells of the inverter operate at a high switching rate. Therefore, a high performance and also efficient torque and flux controllers are obtained, enabling a DTC solution for multilevel-inverter-powered motor drives.   相似文献   

7.
In this paper, the influences of the hysteresis bands on the direct torque control (DTC) of an induction motor are analytically investigated, and the switching frequency of the inverter is predicted based on the analysis. The flux and torque hysteresis bands are the only gains to be adjusted in DTC, and the inverter switching frequency and the current waveform are greatly influenced by them. Therefore, the magnitude of the hysteresis band should be determined based on reasonable guidelines which can avoid excessive inverter switching frequency and current harmonics in the whole operating region. This paper predicts the inverter switching frequency according to torque and flux hysteresis bands based on induction machine parameters and control sampling period, and investigates the effect of hysteresis bands to line current harmonics. The simulated and experimental results prove the usefulness and feasibility of the proposed method  相似文献   

8.
孙伟  何礼高 《变频器世界》2009,(3):39-43,53
在级联多电平直接转矩控制中,通过引入错时采样空间矢量调制法,采用PI调节与错时采样空间矢量调制,摒弃开关向量表与滞环比较器,可以克服传统直接转矩控制开关向量表复杂、波形质量差、转矩脉动大、开关频率不定等缺点。无速度传感器技术的使用可提高可靠性与降低成本。与其他多电平空间矢量算法相比,其功率单元使用均衡,执行效率高,易于实现,可保证无速度传感器直接转矩控制的实时性。通过仿真对这一方法进行了证明。  相似文献   

9.
This paper presents a high-performance torque and flux control strategy for high-power induction motor drives. The control method uses the torque error to control the load angle, obtaining the appropriate flux vector trajectory from which the voltage vector is directly derived based on direct torque control principles. The voltage vector is then generated by an asymmetric cascaded multilevel inverter without need of modulation and filter. Due to the high output quality of the inverter, the torque response presents nearly no ripple. In addition, switching losses are greatly reduced since 80% of the power is delivered by the high-power cell of the asymmetric inverter, which commutates at fundamental frequency. Simulation and experimental results for 81-level inverter are presented.  相似文献   

10.
In this paper, a simple direct torque control (DTC) method for sensorless matrix converter drives is proposed, which is characterized by a simple structure, minimal torque ripple and unity input power factor. Also, a good sensorless speed-control performance in the low speed operation is obtained, while maintaining constant switching frequency and fast torque dynamics. It is possible to combine the advantages of matrix converters with the advantages of the DTC strategy using space vector modulation a deadbeat algorithm in the stator flux reference frame. Experimental results are shown to illustrate the feasibility of the proposed strategy.  相似文献   

11.
Direct torque control (DTC) of induction machines is known to have a simple control structure with comparable performance to that of the field-oriented control technique. Two major problems that are usually associated with DTC drives are: switching frequency that varies with operating conditions and high torque ripple. To solve these problems, and at the same time retain the simple control structure of DTC, a constant switching frequency torque controller is proposed to replace the conventional hysteresis-based controller. In this paper, the modeling, averaging, and linearization of the torque loop containing the proposed controller followed by simulation and experimental results are presented. The proposed controller is shown to be capable of reducing the torque ripple and maintaining a constant switching frequency.  相似文献   

12.
The switching characteristics of an inverter feeding an induction motor controlled with the direct torque control (DTC) technique are assessed in steady state. At first, the application share of the inverter voltage vectors for the stator flux covering half a sextant is defined and predicted. The prediction indicates that, under operation at fixed inverter dc link voltage and stator flux magnitude, the application share depends only on the supply frequency of the motor and, to a small extent, on the load. Afterwards, the inverter transitions and the corresponding phase commutations within a stator flux sextant are analyzed. The outcome of the analysis permits to compute the commutations of the inverter phases in one turn of the stator flux and, from them, the inverter switching frequency is obtained. Its value is influenced by the sampling interval and the control delay arising from the microprocessor implementation of DTC. For given sampling interval and control delay, it is shown that the inverter switching frequency depends on the same quantities as the application share of the inverter voltage vectors. A comparison with the switching characteristics of an inverter controlled with the space vector modulation technique is carried out. At last, the paper discusses the sensitivity of the switching frequency of an inverter for DTC to the following quantities: inverter dc link voltage, sampling interval and control delay. Throughout the paper simulation and experimental results are given to confirm the theoretical findings.  相似文献   

13.
The letter presents a new method of increasing the switching frequency of a direct torque control (DTC) of induction machines. The method simply replaces the hysteresis comparator of the conventional DTC drives with a triangular waveform-based constant switching frequency controller. By synchronizing the digital signal processor (DSP) sampling with a triangular waveform and with an appropriate systematic controller design, a high switching frequency DTC drive is possible without requiring a high-frequency space-vector modulator. The implementation of the controller is simple and operates based on waveform comparisons; in this letter it is implemented using a combination of a DSP and a field programmable gate array device. Simulation and experimental results indicate that the controller both reduces the torque ripple and maintains a constant switching frequency.  相似文献   

14.
This paper presents the application of direct torque control in an induction motor, using a multilevel cascaded inverter with separated DC sources. The control strategy operates with imposed switching frequency, improving torque behavior. The paper studies the theoretical concepts related to this method, like vector selection, state variables estimation, and commutation time calculation. In addition, this paper presents results for a three- and eleven-level inverter-fed drives, from which it can be appreciated that the increase of levels of the load voltage reduces the torque ripple.  相似文献   

15.
A modified direct torque control (DTC) scheme for interior permanent magnet synchronous machine (IPMSM) is investigated in this paper, which features in very low flux and torque ripple and almost fixed switching frequency. It is based on the compensation of the error flux linkage vector by means of space vector modulation. Modeling and experimental results show that the flux and torque ripples are greatly reduced when compared with those of the basic DTC. With the new scheme, very short sampling time is not essential. All the advantages of the basic DTC are still retained. In addition, fixed switching frequency at different operating conditions becomes possible. The field-weakening control of this drive is also studied; an IPM DTC drive with a wider operation range and lower flux and torque ripple has been achieved experimentally.  相似文献   

16.
Flying capacitor multilevel inverters and DTC motor drive applications   总被引:1,自引:0,他引:1  
In this paper, the requirements imposed by a direct torque control (DTC) strategy on multilevel inverters are analyzed. A control strategy is proposed in order to fulfill those requirements when a flying-capacitor multilevel inverter is used. Simulation and practical results will confirm the performance of the proposed strategy when using the multilevel inverter to control an induction motor by the DTC principle. Also, the advantages of using a multilevel inverter with a DTC strategy are shown by simulation results.  相似文献   

17.
直接转矩控制系统减小转矩脉动的仿真研究   总被引:1,自引:0,他引:1  
传统的直接转矩控制系统(DTC)转矩脉动较大,本文利用双PI控制方法进行了改进,设计出一种非零电压空间矢量和零电压空间矢量控制器,改进了速度凋节器以及开关状态表,利用Matlab/simulink进行了仿真,结果表叫,所提方案能极大的减小转矩脉动和转速响应时间,同时算法简单,易于实现。  相似文献   

18.
传统的直接转矩控制系统(DTC)转矩脉动较大,文章利用双PI控制方法进行了改进,设计出一种非零电压空间矢量和零电压空间矢量控制器,改进了速度调节器以及开关状态表,利用Matlab/Simulink进行了仿真。结果表明,所提方案能极大地减小转矩脉动和转速响应时间,同时算法简单,易于实现。  相似文献   

19.
A constant switching frequency torque control method is presented in this paper, that uses flux error vector based space vector modulation (SVM) to achieve steady state and dynamic control of torque. The effect of SVM switching on torque ripple has been analyzed using "flux ripple vectors". This approach is used to develop an insight of torque ripple and to estimate it for any operating angular velocity. We propose a method of compensation to maintain steady state control of torque in the overmodulation region of operation. During torque dynamic, the optimum maximum switching state vector is selected. This gives a response similar to that obtained using direct torque control (DTC) and direct self control (DSC) methods. The proposed method is verified experimentally.  相似文献   

20.
In this paper, a new predictive direct torque control (DTC) strategy of the doubly fed induction machine (DFIM) is presented. It is especially designed to operate at a considerably low constant switching frequency, reducing the electromagnetic torque and rotor flux ripples, in order to provide good steady-state and fast dynamic performances. This control is convenient for high power drive and generator applications, with restricted switching frequency. The DFIM is connected to the grid by the stator and the rotor is fed by a two level voltage source converter. In addition, this control method allows to implement a technique that reduces the switching power losses of the converter. Finally, experimental results show that the proposed DTC method effectively reduces the torque and flux ripples at low switching frequency, even under variable speed operation conditions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号