首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
血泵运转时其内部不规则流动会对血液造成不同程度的机械损伤,从而导致溶血和血栓,严重时可能危及患者生命。流体动力学(computational fluid dynamics,CFD)分析方法能够对血泵的水力性能以及溶血程度有一个较好的评估。采用流体动力学软件fluent,对设计的一种轴流式血泵进行分析,采用模型、用户自定义函数技术,在轴流式血泵内部三维流场数值模拟的基础上,探索流量与叶轮转速的关系,CFD分析结果表明,泵能够在稳定流动情况下在6400 r/min转速下能够产生5 L/min的流量以及100 mmHg的扬程;分析轴流式血泵内流场以及叶轮和导叶表面的剪应力分布,并利用粒子追踪法获取细胞的流动轨迹,并根据建立一种轴流式血泵的溶血数学模型阐述轴流式血泵溶血性能,研究结果可作为轴流式血泵的结构设计和降低溶血的重要依据。制作了泵的实体,导叶与叶轮采用航空铝合金制作,外壳采用透明的有机玻璃。采用不同的工况对泵的水力性能进行了测试,流体介质采用甘油与水按一定比例混合的溶液,使之黏度与人体的血液接近,结果表明:CFD分析和实验结果能较好地吻合。  相似文献   

2.
为了阐明核主泵叶轮和导叶叶片数匹配特性对水力性能的影响。以缩比系数为0.5的模型泵为研究对象,基于核主泵几何参数,建立叶轮叶片数Z1和导叶叶片数Z2的多种匹配方案,通过数值方法预测多种匹配方案下核主泵设计工况下的水力性能。结果分析表明:只改变叶轮叶片数时,随着叶轮叶片数的增加,叶轮与泵扬程的增加趋势逐渐变缓;只改变导叶叶片数时,导叶叶片数的选取对核主泵效率影响的最大差值为8.48%。导叶和压水室内漩涡区和水力损失主要集中在以泵出口为起点沿叶轮旋转方向的半球形区域,且环形压水室的水力损失在总损失中所占比重最小为36.4%,表明环形压水室是核主泵水力损失最大的过流部件。根据多种叶片数匹配方案的结果分析,表明设计工况下核主泵叶轮与导叶叶片数的最佳匹配值为(Z_1=4,Z_2=9)、(Z_1=5,Z_2=12)、(Z_1=6,Z_2=11)和(Z_1=3,Z_2=7),即导叶叶片数在叶轮叶片数的2倍附近且两者互质时,泵的水力性能达到最佳值。研究结果为核主泵叶轮和导叶叶片数的选取提供了理论依据。  相似文献   

3.
利用CFD软件Fluent对多级导叶式清水离心泵的内部流场进行了数值模拟,得出了叶轮及导叶内部流道的速度和压力分布规律,并发现了叶轮进口回流,出口的二次流动特征等叶轮内部流动的细节,导叶出口区产生了一个低压区等流动特征。然后根据自编计算软件利用计算得到的速度场数据计算出泵的扬程、功率、效率和流量之间的关系曲线,并与试验数据进行了比较。结果表明:在设计工况附近,预测值与试验值吻合较好,在其它工况点,特别是小流量工况点,误差较大。  相似文献   

4.
以150QJS20型精铸不锈钢井泵为研究对象,以清水为介质,基于雷诺时均Navier-stockes方程和标准双方程湍流模型,利用CFD软件(nuent6.2.16)对其进行定常数值模拟计算,对设计流量工况下叶轮及导叶中间截面的内流场进行分析研究,揭示了其内部流动的主要特征;预测了泵的水力性能,并与性能试验测得的流量—扬程、流量一效率及流量一功率等特性曲线进行对比分析;研究结果表明数值模拟计算预测与试验结果趋势一致,可用于指导实际工程。  相似文献   

5.
对1000 MW轴流式核主泵5个不同温度下相同流量点工况进行数值模拟计算,并与试验值进行对比,计算结果与试验结果吻合较好,验证了CFD数值计算的准确性和精度。在核主泵试验过程中,发现核主泵扬程随着温度升高逐渐升高,研究了泵的外特性扬程变化,并分析了泵内部流动和各部分能量损失变化情况,表明泵扬程变化主要是由于水力损耗变化导致的。  相似文献   

6.
为研究CAP1400核主泵水力部件的流动特性,基于N-S方程及k-ωSST湍流模型,对核主泵水力部件多个流量点进行三维流动数值计算,研究了核主泵内不同流量工况下的流动特征,并对计算的额定工况下的性能与试验进行了对比。结果表明,基于CFD分析的方法可有效预测CAP1400核主泵水力性能,获取内部流动细节。在额定设计工况下,核主泵流态均匀稳定,水力性能优良。通过与非设计流量工况对比,较全面比较了该核主泵流动特性,对支撑核主泵水力部件设计和优化提供有益的参考。  相似文献   

7.
高比转数轴流泵水力模型设计与紊流数值分析   总被引:20,自引:0,他引:20  
为满足低扬程泵站工程建设的需要,采用简单径向平衡流动模型和二维叶栅面元法叶片造型方法设计高比转数轴流泵水力模型。并用RNG k-ε紊流模型对水力模型进行数值分析,分析过程考虑了叶轮叶顶间隙的影响。模型试验表明,设计点相当准确。数值分析在设计点附近精度较好,能满足工程应用的要求,但在非设计工况误差较大。计算还表明,叶轮在正扬程时就出现了负的轴向力,从而解释了立式泵在低扬程运行时的抬机现象。  相似文献   

8.
《流体机械》2013,(3):5-9
为分析射流式自吸离心泵的半开式叶轮与导流器前盖之间的间隙大小对其性能的影响,采用数值模拟的方法得到了4种不同间隙下射流式自吸离心泵水力性能、径向力变化规律、自吸过程泵内部气液两相分布及流动情况,结果表明:间隙大小对射流式自吸离心泵水力性能影响明显,随着间隙增大,泵扬程和效率呈明显下降趋势,额定工况点间隙为0.5时的扬程和效率相对于间隙2mm时的扬程和效率分别下降14.43%、7.07%;叶轮与导流器上径向力也随间隙增大而减小;叶轮含气率、导流器两个不对称出口及泵体出口的气相质量流率随间隙增大而降低.兼顾考虑水力性能、自吸性能及加工装配工艺,最终确定叶轮与导流器前盖的间隙为0.5mm.样机试验结果表明:在额定工况点扬程34.21m,效率55.29%,当自吸高度为5m时,自吸时间45s,达到设计要求。  相似文献   

9.
为提高深井离心泵的水力性能,针对100QJ16型深井泵,按照L9(34)正交表,选取空间导叶的进口冲角、包角、叶片出口安放角和叶片数等4个因素,每个因素取3个水平,设计出9个导叶模型,并分别与同一个叶轮装配。基于CFX软件,对两级模型泵进行了全流场数值模拟,获得9组方案在额定工况下的扬程和效率。采用极差分析法分析了各几何参数对扬程和效率的影响规律以及影响空间导叶性能的主要因素和次要因素。空间导叶进口冲角和叶片包角对两级泵的扬程和效率的影响较大。将优化方案进行了样机试验,其效率达到了设计要求。  相似文献   

10.
为研究核主泵水力部件的流动特性,基于N-S方程及k-ωSST湍流模型,对核主泵水力部件多个流量点进行三维流动数值计算,研究了核主泵内不同流量工况下的流动特征,并对额定工况下的性能数据与试验数据进行了对比。结果表明,基于CFD分析的方法可有效预测核主泵的水力性能,获取内部流动细节。在额定设计工况下,核主泵流态均匀稳定,水力性能优良。通过与非设计流量工况的对比,较全面地分析了该核主泵流动特性,为解决核主泵水力部件设计和优化提供了有益的参考。  相似文献   

11.
以某核主泵轴承为研究对象,针对华龙一号对其超设计基准工况运行要求,采用CFD和Stage(Mixing Plane)单叶片通道技术对叶轮导叶进行了仿真。通过对叶轮导叶流道进出口面积的设计及叶轮导叶面积比匹配优化,提高了叶轮导叶的水力效率,对核主泵轴承在超设计基准工况中的SBO和丧失冷却水运行的安全性予以提升,结果表明:优化后叶轮导叶性能较之前有明显提高;对于该类叶轮导叶的优化,需要同时对叶轮导叶进出口流道面积进行调整。研究成果可为相关核主泵轴承用叶轮导叶优化设计提供一定的技术参考。  相似文献   

12.
大型三代先进压水堆核电站最后一个难度最大的重大装备CAP1400大功率屏蔽电机主泵正在国产化研制,关键水力部件叶轮和导叶的水力设计是核主泵科学研究中的一项重点也是难点。基于前期相关研究基础,研发设计比转速约105的混流式缩尺(1∶2.5)高效水力模型,探讨模型建立、参数化水力设计、CFD数值计算与水力性能优化、模型试验与性能分析;针对最优效率点和流动损失进行探讨,给出多重约束下高效叶轮和导叶设计建议。模型试验得到水力模型设计点效率为84.92%、性能曲线变化平缓、运行范围内效率高、且汽蚀性能良好;换算到真机工况效率达到88.3%。该水力模型成为重大专项CAP1400屏蔽电机主泵水力部件采纳的设计方案之一,为后续核主泵水力部件的高性能设计、工程应用提供重要借鉴和原始技术积累。  相似文献   

13.
为分析介质黏度对旋涡泵不同工况下的内流场及外特性的影响,由数值模拟方法分别对不同介质黏度和不同流量工况下的旋涡泵内流场结构及其外特性进行对比分析。分析结果表明:叶轮及侧流道内流动沿叶轮旋转方向从泵的进口至出口逐渐趋于稳定,各纵向截面上存在明显的纵向旋涡和径向旋涡,随着流量的增大,叶轮及侧流道内的纵向旋涡及径向旋涡强度逐渐减弱,叶轮做功能力逐渐降低,泵的扬程逐渐下降,叶轮内湍动能耗散及叶轮内的涡量分布均随着流量的增大而减小。随着介质黏度的增大,各纵向截面上的纵向旋涡和径向旋涡强度均逐渐减弱,旋涡泵内湍动能耗散随粘性的变化更为显著,其随着介质黏度的增加而显著增大。在各流量工况下,旋涡泵的扬程及效率均随着介质黏度的增加呈下降趋势;在小流量时,扬程及效率随黏度的增大而下降的趋势较为平缓,但在大流量工况时,扬程及效率随着黏度的增大而急剧下降。  相似文献   

14.
本文对多级离心泵设计了流道式导叶,采用Spalart-Allmaras湍流模型对设计结果进行数值模拟。通过对流道式导叶几何结构的调整,探讨了叶轮-导叶间隙、导叶进口方式及级间密封对离心泵流动性能的影响。经过分析得到了以下结论:导叶进口直径为叶轮出口直径的1.027倍时与叶轮匹配较好;导叶进口宽度的减小在小流量工况下存在优势;对导叶进口进行斜切处理可以有效消除密封通道对水泵造成的影响,同时提高了大流量工况下的水力性能,设计点效率提高0.65%,扬程提高1.30%,分析结果为离心泵流道式导叶与叶轮匹配设计提供理论指导。  相似文献   

15.
斜轴伸泵装置水动力数值计算与模型试验   总被引:2,自引:0,他引:2  
为研究斜轴伸泵装置的水动力特性,基于ANSYS CFX软件采用RNG k-ε湍流模型和可伸缩壁面函数对泵装置进行三维粘性湍流定常数值计算,计算区域包括叶轮、导叶和进、出水流道,共计算包括设计工况在内的9个工况点。计算结果揭示出该泵装置的内部流动特性,分析在叶轮旋转条件下斜15°进水流道出口断面的水力性能及其对叶轮进口断面相对高度位置的影响和叶轮受水流作用力的分布规律,并探讨水力矩的变化规律及翼型附近的相对流速分布,给出参考的叶轮名义安装高度取值范围(0.7~0.9)D。通过数值计算预测了模型泵装置的水力性能并与物理模型试验结果进行对比,预测的效率值和试验值最大绝对误差为5.01%,最优工况与设计工况时扬程的相对误差、效率的绝对误差均在3.5%以内。  相似文献   

16.
炉水循环泵是机泵一体的高温高压无轴封泵,运用ANSYS-CFX软件对365WLB-965型炉水循环泵样机的内部流场进行数值模拟和试验验证。结果表明,在常温常压工况下,数值模拟与真机试验的扬程及效率变化趋势大致相同,扬程基本相符,模拟效率高于真机试验效率。在高温高压小流量工况下,叶轮内部存在少量旋涡,导叶内部旋涡较多;随着流量的增大,流动更加稳定,叶轮流域速度分布更加均匀,导叶内部旋涡越来越少;在1.2Q流量时,流动最为稳定;流量继续变大时,旋涡重新出现,但相对稳定;泵体内部流动紊乱,旋涡较多,局部存在低压区;球体截面直径减小的过程中,旋涡越来越多,旋涡随流量的增大逐渐减少,流动速度随流量的增大逐渐增大。炉水循环泵应避免在小流量区运行,可对其导叶进行优化设计来提高炉水循环泵样机额定工况下的性能。  相似文献   

17.
为提高某导叶式多级离心泵额定工况的扬程,先后对导叶喉部和叶轮流道进行打磨,通过试验对比分析可知:打磨导叶喉部使得各工况效率有所提高,小流量区间扬程降低而大流量区间扬程增加;打磨叶轮流道提高了各工况的扬程,而效率基本不变。  相似文献   

18.
串列式双级轴流泵性能的数值模拟   总被引:1,自引:0,他引:1  
为了揭示串列泵的内部流动机理及其能量特性,采用两个具有试验结果的轴流式叶轮和一新设计的导叶串联组成了一串列式轴流泵模型。应用Pro-E对该串列泵进行三维实体造型,用数值模拟的方法计算泵内的流场。数值计算采用NUMECA商业软件。在不同的工况条件下获得前后叶轮内部的速度矢量分布。基于流场计算结果,预测包括扬程、效率和轴功率在内的串列泵性能。将数值计算的结果与原叶轮的试验结果进行对比并与首级叶轮比较,串列轴流泵次级叶轮压力面和吸力面的速度具有较大的差值。与一般的轴流泵比较,串列式轴流泵具有比较宽的高效区,最优工况点向大流量区域偏移,其轴功率不再像普通轴流泵那样随流量的增加而减小。为了分析前后叶轮的相互作用,预测不同的后叶轮叶片偏转角条件下的串列泵性能,结果表明后叶轮的叶片偏转角对串列泵性能有重大的影响。  相似文献   

19.
沈姗姗  左强 《机电工程》2020,37(3):221-226
针对导叶式离心泵内部流场流动不稳定的问题,运用仿生学技术和原理对鲨鱼鳍结构做了适当抽象处理,并运用在导叶式离心泵叶轮叶片前缘位置。对叶片仿鲨鱼鳍的导叶式离心泵内部流场进行了数值计算,研究了3个典型工况下离心泵内部流场的流动特性,得到了叶轮和导叶径向力的变化特性,进而分析了离心泵内部流场的湍动能分布规律,并进行了试验验证。研究结果表明:相比原模型,叶片仿鲨鱼鳍的导叶式离心泵改善了泵内流动特性,减小了泵内的湍动能分布;同时降低了叶轮和导叶的径向力,减弱了叶轮与导叶的动静干涉作用;仿鲨鱼鳍叶片减轻了导叶式离心泵内部流动的不稳定,明显提高了泵的扬程和效率等外特性参数。  相似文献   

20.
对离心泵而言,叶片出口角β2是影响泵性能的一个重要参数。基于Fluent离心泵全流场数值模拟,对某型号低比转数离心泵进行了大出口角叶形的改形设计,研究了不同大出口角对离心泵水力性能的影响,并对比分析了原模型泵与S形叶片离心泵水力特性及流动特性。结果表明:离心泵扬程随着出口角的增大而增大,在出口角为90°时达到最大值。当出口角为90°时,S形叶片的水力性能最佳,在设计工况下及大流量工况泵扬程显著提升且效率有小幅度提升,但小流量工况下泵效率略有下降。S形叶片可以有效抑制离心泵叶轮内的边界层分离现象,且随着流量的增大抑制效果越明显。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号