首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 718 毫秒
1.
High-performance nickel-induced laterally crystallized (NILC) p-channel poly-Si thin-film transistors (TFTs) have been fabricated without hydrogenation. Two different thickness of Ni seed layers are selected to make high-performance p-type TFTs. A very thin seed layer (e.g., 5 /spl Aring/) leads to marginally better performance in terms of transconductance (Gm) and threshold voltage (V/sub th/) than the case of a 60 /spl Aring/ Ni seed layer. However, the p-type poly-Si TFTs crystallized by the very thin Ni seeding result in more variation in both V/sub th/ and G/sub m/ from transistor to transistor. It is believed that differences in the number of laterally grown polycrystalline grains along the channel cause the variation seen between 5 /spl Aring/ NILC TFTs compared to 60-/spl Aring/ NILC TFTs. The 60 /spl Aring/ NILC nonhydrogenated TFTs show consistent high performance, i.e., typical electrical characteristics have a linear field-effect hole mobility of 156 cm/sup 2//V-S, subthreshold swing of 0.16 V/dec, V/sub th/ of -2.2 V, on-off ratio of >10/sup 8/, and off-current of <1/spl times/10/sup -14/ A//spl mu/m when V/sub d/ equals -0.1 V.  相似文献   

2.
We demonstrate nanocrystalline silicon (nc-Si) top-gate thin-film transistors (TFTs) on optically clear, flexible plastic foil substrates. The silicon layers were deposited by plasma-enhanced chemical vapor deposition at a substrate temperature of 150/spl deg/C. The n-channel nc-Si TFTs have saturation electron mobilities of 18 cm/sup 2/V/sup -1/s/sup -1/ and transconductances of 0.22 /spl mu/S/spl mu/m/sup -1/. With a channel width to length ratio of 2, these TFTs deliver up to 0.1 mA to bottom emitting electrophosphorescent organic light-emitting devices (OLEDs) which were fabricated on a separate glass substrate. These results suggest that high-current, small-area OLED driver TFTs can be made by a low-temperature process, compatible with flexible clear plastic substrates.  相似文献   

3.
We fabricated the first bottom-gate amorphous silicon (a-Si:H) thin-film transistors (TFTs) on a clear plastic substrate with source and drain self-aligned to the gate. The top source and drain are self-aligned to the bottom gate by backside exposure photolithography through the plastic substrate and the TFT tri-layer. The a-Si:H channel in the tri-layer is made only 30 nm thick to ensure high optical transparency at the exposure wavelength of 405 nm. The TFTs have a threshold voltage of /spl sim/3 V, subthreshold slope of /spl sim/0.5 V/dec, linear mobility of /spl sim/1 cm/sup 2/V/sup -1/ s/sup -1/, saturation mobility of /spl sim/0.8 cm/sup 2/V/sup -1/s/sup -1/, and on/off current ratio of >10/sup 6/. These results show that self-alignment by backside exposure provides a solution to the fundamental challenge of making electronics on plastics: overlay misalignment.  相似文献   

4.
We demonstrate a manufacturable, large-area separation approach for producing high-performance polycrystalline silicon thin-film transistors on flexible plastic substrates. The approach allows the use of high growth-temperature gate oxides and removes the need for hydrogenation. The process flow starts with the deposition of a nano-structured high surface-to-volume ratio film on a reuseable "mother" substrate. This film functions as a sacrificial release layer and is Si-based for process compatibility. After high-temperature TFT fabrication (up to 1100/spl deg/C) is carried to completion on the sacrificial film coated mother substrate, a thick plastic top layer film is applied, and the sacrificial layer is removed by chemical attack. By using this separation process, the temperature, smoothness, and mechanical limitations posed by plastic substrates are completely circumvented. Both excellent n-channel and p-channel TFTs on plastic have been produced. We report here on p-channel TFTs on separated plastic with a linear field effect (hole) mobility of 174 cm/sup 2//V/spl middot/s, on/off current ratio of >10/sup 8/ at V/sub ds/=-0.1 V, off current of <10/sup -11/ A//spl mu/m-channel-width at V/sub ds/=-0.1 V, sub-V/sub t/ swing of /spl sim/200 mV/dec, and threshold voltage of -1.1 V.  相似文献   

5.
The design, fabrication and characterisation of a high performance 4H-SiC diode of 1789 V-6.6 A with a low differential specific-on resistance (R/sub SP/spl I.bar/ON/) of 6.68 m/spl Omega/ /spl middot/ cm/sup 2/, based on a 10.3 /spl mu/m 4H-SiC blocking layer doped to 6.6/spl times/10/sup 15/ cm/sup -3/, is reported. The corresponding figure-of-merit of V/sub B//sup 2//R/sub SP/spl I.bar/ON/ for this diode is 479 MW/cm/sup 2/, which substantially surpasses previous records for all other MPS diodes.  相似文献   

6.
This work reports the development of high power 4H-SiC bipolar junction transistors (BJTs) by using reduced implantation dose for p+ base contact region and annealing in nitric oxide of base-to-emitter junction passivation oxide for 2 hours at 1150/spl deg/C. The transistor blocks larger than 480 V and conducts 2.1 A (J/sub c/=239 A/cm/sup 2/) at V/sub ce/=3.4 V, corresponding to a specific on-resistance (R/sub sp on/) of 14 m/spl Omega/cm/sup 2/, based on a drift layer design of 12 /spl mu/m doped to 6/spl times/10/sup 15/cm/sup -3/. Current gain /spl beta//spl ges/35 has been achieved for collector current densities ranging from J/sub c/=40 A/cm/sup 2/ to 239 A/cm/sup 2/ (I/sub c/=2.1 A) with a peak current gain of 38 at J/sub c/=114 A/cm/sup 2/.  相似文献   

7.
Amorphous silicon (a-Si:H) thin-film transistors (TFTs) used in emerging, nonswitch applications such as analog amplifiers or active loads, often have a bias at the drain terminal in addition to the gate that can alter their threshold voltage (V/sub T/) stability performance. At small gate stress voltages (0/spl les/V/sub ST//spl les/15 V) where the defect state creation instability mechanism is dominant, the presence of a bias at the TFT drain decreases the overall shift in V/sub T/(/spl Delta/V/sub T/) compared to the /spl Delta/V/sub T/ in the absence of a drain bias. The measured shift in V/sub T/ appears to agree with the defect pool model that the /spl Delta/V/sub T/ is proportional to the number of induced carriers in the a-Si:H channel.  相似文献   

8.
Electron cyclotron resonance plasma-enhanced chemical vapor deposition (ECR-PECVD) is investigated as a technique for depositing hydrogenated amorphous silicon (a-Si : H) at a temperature of 80/spl deg/C, which is compatible with the use of transparent, plastic substrates. The ECR-PECVD reactor is described and the principles underlying its operation explained. In particular, the factors controlling the deposition of a-Si : H by this technique are investigated, and it is shown that control of gas phase reactions between silane and hydrogen species is essential. High-quality a-Si : H is deposited in a narrow processing window with a photosensitivity greater than 10/sup 6/. Thin-film transistors (TFTs) fabricated at 125/spl deg/C incorporating low-temperature a-Si : H as the channel layer have a switching ratio of almost 10/sup 5/. With further optimization of the other material layers, such TFTs could be used for the active matrix transistors in flexible liquid crystal displays on plastic substrates.  相似文献   

9.
We fabricated CMOS circuits from polycrystalline silicon films on steel foil substrates at process temperatures up to 950/spl deg/C. The substrates were 0.2-mm thick steel foil coated with 0.5-/spl mu/m thick SiO/sub 2/. We employed silicon crystallization times ranging from 6 h (600/spl deg/C) to 20 s (950/spl deg/C). Thin-film transistors (TFTs) were made in either self-aligned or nonself-aligned geometries. The gate dielectric was SiO/sub 2/ made by thermal oxidation or from deposited SiO/sub 2/. The field-effect mobilities reach 64 cm/sup 2//Vs for electrons and 22 cm/sup 2//Vs for holes. Complementary metal-oxide-silicon (CMOS) circuits were fabricated with self-aligned TFT geometries, and exhibit ring oscillator frequencies of 1 MHz. These results lay the groundwork for polycrystalline silicon circuitry on flexible substrates for large-area electronic backplanes.  相似文献   

10.
Amorphous-silicon (a-Si) thin-film transistors (TFTs) were fabricated on a free-standing new clear plastic substrate with high glass transition temperature (T/sub g/) of >315/spl deg/ C and low coefficient of thermal expansion of <10 ppm/ /spl deg/ C. Maximum process temperatures on the substrates were 250/spl deg/C and 280/spl deg/C, close to the temperatures used in industrial a-Si TFT production on glass substrates. The first TFTs made at 280/spl deg/C have dc characteristics comparable to TFTs made on glass. The stability of the 250/spl deg/C TFTs on clear plastic is approaching that of TFTs made on glass at 300/spl deg/C-350/spl deg/C. TFT characteristics and stability depend only on process temperature and not on substrate type.  相似文献   

11.
Design and fabrication of 4H-SiC(0001) lateral MOSFETs with a two-zone reduced surface field structure have been investigated. The dose dependencies of experimental breakdown voltage show good agreement with simulation. Through the optimization of implant dose, high-temperature (1700/spl deg/C) annealing after ion implantation, and reduction of channel length, a breakdown voltage of 1330 V and a low on-resistance of 67 m/spl Omega//spl middot/cm/sup 2/ have been obtained. The figure-of-merit (V/sub B//sup 2//R/sub on/) of the present device reaches 26 MW/cm/sup 2/, being the best performance among lateral MOSFETs reported. The temperature dependence of static characteristics is also presented.  相似文献   

12.
This letter reports a newly achieved best result on the specific ON-resistance (R/sub SP/spl I.bar/ON/) of power 4H-SiC bipolar junction transistors (BJTs). A 4H-SiC BJT based on a 12-/spl mu/m drift layer shows a record-low specific-ON resistance of only 2.9 m/spl Omega//spl middot/cm/sup 2/, with an open-base collector-to-emitter blocking voltage (V/sub ceo/) of 757 V, and a current gain of 18.8. The active area of this 4H-SiC BJT is 0.61 mm/sup 2/, and it has a fully interdigitated design. This high-performance 4H-SiC BJT conducts up to 5.24 A at a forward voltage drop of V/sub CE/=2.5 V, corresponding to a low R/sub SP-ON/ of 2.9 m/spl Omega//spl middot/cm/sup 2/ up to J/sub c/=859 A/cm/sup 2/. This is the lowest specific ON-resistance ever reported for high-power 4H-SiC BJTs.  相似文献   

13.
Top-gate thin-film transistors (TFTs) with microcrystalline silicon (/spl mu/c-Si) channel layers deposited using standard 13.56 MHz plasma-enhanced chemical vapor deposition were fabricated at a maximum processing temperature of 250/spl deg/C. The TFTs employ amorphous silicon nitride (a-SiN) as the gate dielectric layer. The 80-nm-thick /spl mu/c-Si channel layer showed a dark conductivity of the order of 10/sup -7/ S/cm and a crystalline volume fraction of over 80%. The /spl mu/c-Si TFTs showed a field effect mobility of 0.85 cm/sup 2//V/spl middot/s, a threshold voltage of 4.8 V, a subthreshold slope of 1 V/dec, and an ON/OFF current ratio of /spl sim/10/sup 7/. More importantly, the TFTs were very stable under gate bias stress, offering promise for organic light-emitting display (OLED) applications.  相似文献   

14.
High-performance polycrystalline silicon (poly-Si) thin-film transistors (TFTs) have been fabricated using metal-induced crystallization followed by laser annealing (L-MIC). Laser annealing after MIC was found to yield a major improvement to the electrical characteristics of poly-Si TFTs. At a laser fluence of 330 mJ/cm/sup 2/, the field effect mobility increased from 71 to 239 cm/sup 2//Vs, and the minimum leakage current reduced from around 3.0/spl times/10/sup -12/ A//spl mu/m to 2.9/spl times/10/sup -13/ A//spl mu/m at a drain voltage of 5 V. In addition, the dependence of the TFT characteristics on the laser energy density was much weaker than that for conventional excimer laser annealed poly-Si TFTs.  相似文献   

15.
The authors demonstrate high-performing n-channel transistors with a HfO/sub 2//TaN gate stack and a low thermal-budget process using solid-phase epitaxial regrowth of the source and drain junctions. The thinnest devices have an equivalent oxide thickness (EOT) of 8 /spl Aring/, a leakage current of 1.5 A/cm/sup 2/ at V/sub G/=1 V, a peak mobility of 190 cm/sup 2//V/spl middot/s, and a drive-current of 815 /spl mu/A//spl mu/m at an off-state current of 0.1 /spl mu/A//spl mu/m for V/sub DD/=1.2 V. Identical gate stacks processed with a 1000-/spl deg/C spike anneal have a higher peak mobility at 275 cm/sup 2//V/spl middot/s, but a 5-/spl Aring/ higher EOT and a reduced drive current at 610 /spl mu/A//spl mu/m. The observed performance improvement for the low thermal-budget devices is shown to be mostly related to the lower EOT. The time-to-breakdown measurements indicate a maximum operating voltage of 1.6 V (1.2 V at 125 /spl deg/C) for a ten-year lifetime, whereas positive-bias temperature-instability measurements indicate a sufficient lifetime for operating voltages below 0.75 V.  相似文献   

16.
Yakabe  Y. Kasamatsu  I. Ono  T. 《Electronics letters》2002,38(21):1244-1245
In order to expand the available bandwidth for wavelength division multiplexing transmission systems, a 1.65 /spl mu/m-band optical fibre amplifier with Er/sup 3+/-doped fluorozirconate fibre using 0.8 /spl mu/m upconversion pumping has been demonstrated. The positive gain, 3.8 dB, is the first ever achieved by means of (/sup 2/H/sub 11/2/, /sup 4/S/sub 3/2/) /spl rarr/ /sup 4/I/sub 9/2/ stimulated emission transition.  相似文献   

17.
In this letter, we report the fabrication of high-voltage and low-loss 4H-SiC Schottky-barrier diodes (SBDs) with a performance close to the theoretical limit using a Mo contact annealed at high-temperature. High-temperature annealing for the Mo contact was found to be effective in controlling the Schottky-barrier height at 1.2-1.3 eV without degradation of n-factor and reverse characteristics. We successfully obtained a 1-mm/sup 2/ Mo-4H-SiC SBD with a breakdown voltage (V/sub b/) of 4.15 kV and a specific on resistance (R/sub on/) of 9.07 m/spl Omega//spl middot/cm/sup 2/, achieving a best V/sub b//sup 2//R/sub on/ value of 1898 MW/cm/sup 2/. We also obtained a 9-mm/sup 2/ Mo-4H-SiC SBD with V/sub b/ of 4.40 kV and R/sub on/ of 12.20 m/spl Omega//spl middot/cm/sup 2/.  相似文献   

18.
This paper describes a novel heterojunction bipolar transistor (HBT) structure, the collector-up tunneling-collector HBT (C-up TC-HBT), that minimizes the offset voltage V/sub CE,sat/ and the knee voltage V/sub k/. In this device, a thin GaInP layer is used as a tunnel barrier at the base-collector (BC) junction to suppress hole injection into the collector, which results in small V/sub CE,sat/. Collector-up configuration is used because of the observed asymmetry of the band discontinuity between GaInP and GaAs depending on growth direction. To minimize V/sub k/, we optimized the epitaxial layer structure as well as the conditions of ion implantation into the extrinsic emitter and post-implantation annealing. The best results were obtained when a 5-nm-thick 5/spl times/10/sup 17/-cm/sup -3/-doped GaInP tunnel barrier with a 20-nm-thick undoped GaAs spacer was used at the BC junction, and when 2/spl times/10/sup 12/-cm/sup -2/ 50-keV B implantation was employed followed by 10-min annealing at 390/spl deg/C. Fabricated 40/spl times/40-/spl mu/m/sup 2/ C-up TC-HBTs showed almost zero V/sub CE,sat/ (<10 mV) and a very small V/sub k/ of 0.29 V at a collector current density of 4 kA/cm/sub 2/, which are much lower than those of a typical GaInP/GaAs HBT. The results indicate that the C-up TC-HBT's are attractive candidates for high-efficiency high power amplifiers.  相似文献   

19.
Let GR(4/sup m/) be the Galois ring of characteristic 4 and cardinality 4/sup m/, and /spl alpha/_={/spl alpha//sub 0/,/spl alpha//sub 1/,...,/spl alpha//sub m-1/} be a basis of GR(4/sup m/) over /spl Zopf//sub 4/ when we regard GR(4/sup m/) as a free /spl Zopf//sub 4/-module of rank m. Define the map d/sub /spl alpha/_/ from GR(4/sup m/)[z]/(z/sup n/-1) into /spl Zopf//sub 4/[z]/(z/sup mn/-1) by d/spl alpha/_(a(z))=/spl Sigma//sub i=0//sup m-1//spl Sigma//sub j=0//sup n-1/a/sub ij/z/sup mj+i/ where a(z)=/spl Sigma//sub j=0//sup n-1/a/sub j/z/sup j/ and a/sub j/=/spl Sigma//sub i=0//sup m-1/a/sub ij//spl alpha//sub i/, a/sub ij//spl isin//spl Zopf//sub 4/. Then, for any linear code C of length n over GR(4/sup m/), its image d/sub /spl alpha/_/(C) is a /spl Zopf//sub 4/-linear code of length mn. In this article, for n and m being odd integers, it is determined all pairs (/spl alpha/_,C) such that d/sub /spl alpha/_/(C) is /spl Zopf//sub 4/-cyclic, where /spl alpha/_ is a basis of GR(4/sup m/) over /spl Zopf//sub 4/, and C is a cyclic code of length n over GR(4/sup m/).  相似文献   

20.
A simplified form of the coupling coefficient C(/spl beta//sub p/, /spl beta//sub q/) resulting from a coupled mode theory analysis of wave propagation in a nonuniform medium is derived. It is found for most situations of interest that C(/spl beta//sub p/, /spl beta//sub q/) is proportional to 1/(/spl beta//sub p/-/spl beta//sub q/) and the power transfer between two modes is proportional to 1/(/spl beta//sub p/ - /spl beta//sub q/)/sup 4/. /spl beta//sub p/ and /spl beta//sub q/ are the two different modal propagation constants. For a dielectric rod C(/spl beta//sub p/, /spl beta//sub q/) is a simple line integral around the rod boundary. Approximate forms are presented for optical waveguides.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号