首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In this study, the essential oil of aerial parts of a species of a plant called Smyrnium cordifolium Boiss (SCB) was extracted by supercritical CO2. The essence was analyzed by the method of GC/MS. Design of experiments was carried out with response surface methodology by Minitab 16 software to optimize four operating variables of supercritical carbon dioxide (SC-CO2) extraction (pressure, temperature, CO2 flow rate and extraction dynamic time). This is the first report announcing optimization of the operation of supercritical extraction of SCB in laboratorial conditions. Optimizing process was done to achieve maximum yield extraction. Independent variables were dynamic time (td), pressure (P), temperature (T) and flow rate of SC-CO2 (Q) in the range of 30–150 min, 10–30 MPa, 40–60 °C and 0.5–1.7 ml/min, respectively. The experimental optimal recovery of essential oil (0.8431, w/w%) was obtained at 13.43 MPa, 40 °C, 150 min (dynamic) and 1.7 ml/min (CO2 flow rate).  相似文献   

2.
Supercritical carbon dioxide (SC-CO2) extraction of grape marc was studied using water (W) and ethanol (EtOH) as co-solvent at 15% (w/w), 100 and 200 MPa, and 313.15, 323.15 and 333.15 K to analyze their influence upon total phenols of the extracts. The overall extraction curves were determined and suggested 10 MPa and 313.15 K as the best operating conditions for SC-CO2 + 15%W extraction, and 10 MPa and 333.15 K for SC-CO2 + 15% EtOH. The phenolic yields obtained were 63.4 g/kg of extract for SC-CO2 + 15% W and 38.8 g/kg of extract for SC-CO2 + 15% EtOH. An alternative method combining Sc-CO2 + 15% W extraction, followed by SC-CO2 + 15% EtOH was tested. This procedure provided the best results allowing to obtain the highest phenolic yield (68.0 g/kg of extract), phenol content (733.6 mg GAE/100 g DM), proanthocyanidins concentration (572.8 mg catechin/100 g DM) and antioxidant activity (2649.6 mg α-tocopherol/100 g DM). SC-CO2 methods were compared with methanol extraction.  相似文献   

3.
The present work deals with the application of the supercritical fluid extraction process to extract essential oils from the leaves of an Algerian myrtle plant (Myrtus communis L.). Using the surface response methodology, an optimization of the extraction recovery was carried out, varying the pressure in the range of [10–30 MPa], the temperature within [308–323 K], a solvent flow rate fixed at 0.42 kg h−1 and a mean particle diameter equal to 0.5 mm or less than 0.315 mm. The maximum value of essential oil recovery relative to the initial mass of leaf powder was 4.89 wt%, and was obtained when the SC–CO2 extraction was carried out under 313 K, 30 MPa and with a particle diameter less than 0.315 mm. A second-order polynomial expression was used to express the oil recovery. The calculated mass of recovered oil using the response surface methodology was very close to the experimental value, confirming the reliability of this technique.  相似文献   

4.
Adsorption of 2-phenylethyl alcohol (PEA) from supercritical CO2 onto silica aerogel was investigated. A monolayer to multilayer adsorption isotherm was observed, measured at 15.0 MPa and 323.2 K, from the PEA-unsaturated to PEA-saturated supercritical CO2, indicating the potential utility of the solute-saturated supercritical adsorption (SSA). The amount of PEA adsorbed on the silica aerogel with SSA at different temperatures and pressures was measured, and the release of PEA from the aerogel at 303.2 K was also evaluated. A theoretical model for the SSA equilibrium was developed with the assistance of the adsorption isotherms of pure CO2 onto the silica and considering a three-phase binary system, where the two-dimensional van der Waals equation of state and the three-dimensional Stryjek–Vera modification of the Peng–Robinson equation of state were used respectively to describe the adsorbed phase and the bulk phases (vapor phase and liquid phase). Results showed that the model was capable of describing the adsorption behavior of the system with an average absolute relative deviation of 3.3%.  相似文献   

5.
Phase equilibrium data of caffeine, vanillin, o-ethyl vanillin and a natural rosemary extract (containing 73.9% carnosic acid and 14.7% carnosol) in argon have been determined in present work.Solubility data were determined at temperatures of 313.15 K, 333.15 K and 363.15 K and in the pressure range from 0.82 MPa up to 50.27 MPa using a static–analytic method and were compared to solubility data of the same substances in CO2.Maximal solubility of vanillin in argon was obtained at a temperature of 313.15 K and a pressure of 43.8 MPa, approx. 0.015 g/g. Comparing the solubility data of pure vanillin in argon and in CO2 higher solubility in argon is observed at lower temperatures and pressures. For o-ethyl vanillin the solubility in argon is higher in comparison to solubility in CO2 in the entire range of pressure, especially at higher temperatures.Maximal solubility of caffeine in argon was observed at a temperature of 363.15 K 0.001361 g caffeine/g argon at 38.9 MPa. With increasing pressure solubility increases, while temperature does not have a noticeable impact in the temperature range from 313.15 K to 333.15 K; the solubility increased with increasing temperature to 363.15 K. Similarly, solubility of carnosic acid extract increases with increasing pressure, from about 0.0097 × 10−2 g substance/g gas at 2.08 MPa and at 313.15 K to 0.0338 × 10−2 g substance/g gas at 50.27 MPa and at 363.15 K.Solubility of the investigated compounds in argon is a function of both, pressure and temperature. Generally, pressure significantly impacts solubility particularly up to a pressure of 20.0 MPa in case of vanillin and up to 30 MPa in case of o-ethyl vanillin and carnosic acid extract. An additional increase of pressure has only a slight impact on solubility. In the case of caffeine, the impact of pressure on the solubility becomes more evident at pressures higher than 20 MPa.  相似文献   

6.
Posidonia oceanica residues were extracted with supercritical CO2 in order to isolate phenolic compounds. The process was optimized by developing a mathematical model based on mass transfer mechanism consisting of adsorption of supercritical fluid on the solid particles, desorption of solute and convective transfer of solute phase along the column. Henry relation between solute concentrations on the surface of the solid (Cs) and in the solid (q) was approximated in order to describe the adsorption/desorption equilibrium. The model parameters such as solid-liquid film mass transfer coefficient (kf), molecular diffusivity coefficient (DAB) and axial dispersion (Dax) were estimated using empirical methods. The linear driving force model was applied to improve the yield of total phenolic acid recovery. The optimum parameters were elicited as 25 MPa, 323.15 K and a co-solvent mass ratio of 20% yielding 34.97 μg per gram of dry feed and the model satisfactorily described the extraction yield which can be used for scale-up purposes.  相似文献   

7.
The equilibrium solubilities of cefixime trihydrate and oxymetholone in supercritical carbon dioxide (CO2) were measured using a “static method”. Cefixime trihydrate is a cephalosporin antibiotic drug and Oxymetholone is a 17alpha-alkylated anabolic-androgenic steroid drug. The experimental measurements for cefixime trihydrate were performed at temperatures of 308, 318 and 328 K as well as pressure range from 183 to 335 bar. The solubility of oxymetholone was determined at 308, 318 and 328 K and pressure range from 121 to 305 bar. The experimental solubility data (mole fraction) for cefixime trihydrate and oxymetholone was greater than 1.6 × 10−7 and 1.6 × 10−5 and less than 3.02 × 10−7 and 1.49 × 10−4, respectively. The solubilities for two drugs in CO2 were correlated by using four semi-empirical models such as Bartle, Kumar and Johnstone (K–J), Mendez-Santiago and Teja (M–T) and Chrastil models. The results obtained from the semi-empirical models show that there is good agreement between the experimental data and the results of semi-empirical models. By using the correlation results, the heat of drug–CO2 solvation and heat of drug vaporization for cefixime–CO2 and oxymetholone–CO2 systems may be approximately estimated. Also, the Peng–Robinson (PR) cubic equation of state (CEOS) along with the van der Waals combining rule was applied to correlate the drugs solubilities in supercritical CO2. The average absolute deviation between the experimental data and the results of PR equation for cefixime trihydrate and oxymetholone was 11.92% and 11.74%, respectively.  相似文献   

8.
Recovery of phytosterol from roselle (Hibiscus sabdariffa L.) seeds via supercritical carbon dioxide extraction modified with ethanol was investigated at pressures of 200–400 bar, temperatures from 40 to 80 °C and at supercritical fluid flow rates from 10 to 20 ml/min. It was found that an entrainer such as ethanol could enhance the solubility and extraction yield of roselle seed oil from the seed matrix, compared to values obtained using supercritical CO2. After a typical run (holding period of 30 min, continuous flow extraction of 3 h), the results indicate that the oil recovery was optimal with a recovery of 108.74% and a phytosterol composition of 7262.80 mg kg?1 at relatively low temperature of 40 °C, a high pressure of 400 bar and at a high supercritical fluid flow rate of 20 ml/min in the presence of 2 ml/min EtOH as entrainer. The solubility of roselle seed oil increased with temperature at the operating pressures of 200, 300 and 400 bar. Supercritical fluid extraction involved a short extraction time and the minimal usage of small amounts of entrainer in the CO2.  相似文献   

9.
Supercritical carbon dioxide extraction of Gac (Momordica cochinchinensis Spreng) aril was performed at pressures ranging from 200 to 400 bar, temperatures from 313 to 343 K and specific flow rates from 50 to 90 kg h−1 CO2 kg−1 Gac aril. Total oil recovery and carotenes concentration were investigated in the course of extraction. Mathematical modelling of oil solubility data was also performed. The results showed that at specific flow rate of 70 kg h−1 kg−1, pressure of 400 bar and temperature of 343 K, Gac oil recovery exceeded 95% after 120 min of extraction. Gac oil loading of supercritical carbon dioxide was successfully described by Chrastil's model. Carotenes concentration of extracted Gac oil was found at level of thousands of ppm.  相似文献   

10.
Supercritical carbon dioxide (SC-CO2) was employed to extract omega-3 rich oil from Sacha inchi (Plukenetia volubilis L.) seeds and partially defatted cake. For ground seeds, the supercritical extraction was carried out at temperatures of 40, 50 and 60 °C and pressures of 300 and 400 bar, and for the cold pressed partially defatted cake, the extraction was carried out with 300 bar at 40 °C and with 400 bar at 60 °C. The global extraction yields (X0), oil solubility, fatty acid composition of the oil and tocopherol content were determined. The seed samples used in this work contained 54.3% oil, of which 50.5% was linoleinc acid (ω-3). The maximum extraction recovery for the seeds as 92% at 400 bar and 60 °C, but on one occasion a recovery of 99.1% oil was obtained when cold pressed extraction was employed, followed by supercritical extraction at 400 bar and 60 °C. A high tocopherol content of about 2–3 g/kg of oil was obtained.  相似文献   

11.
The aim of this work was to study the phase behavior of systems involving carbon dioxide (CO2), fatty acid ethyl esters (ethyl oleate, ethyl stearate and ethyl palmitate) and acetone at high pressures. The phase behavior involving these components is an important step regarding the design and optimization of industrial processes based on supercritical conditions, such as biodiesel production and fatty esters fractionation involving supercritical and/or pressurized solvents. In addition, supercritical CO2 can offer an interesting alternative for glycerol separation in water-free biodiesel purification processes. The binary systems investigated in this work were CO2 + ethyl oleate, and CO2 + ethyl stearate and these were compared with the CO2 + ethyl palmitate system. The ternary CO2 + ethyl palmitate + acetone was also investigated at two different ethyl palmitate to acetone molar ratios of (1:1) and (1:3). The static synthetic method using a variable-volume view cell was employed to obtain the experimental data in the temperature range of 303.15–353.15 K. Vapor–liquid (VL), liquid–liquid (LL) and vapor–liquid–liquid (VLL) phase transitions were observed in these systems. In the binary systems, the solubility increased with the presence of unsaturation and decreased with the number of carbon atoms in the fatty ester chain. Addition of acetone as well as ethanol eliminated the liquid–liquid immiscibility and reduced the pressure transitions, therefore increasing the solubility of the ester in supercritical CO2. The experimental data sets for the binary and ternary systems were successfully modeled using the Peng–Robinson equation of state with the classical van der Waals quadratic mixing rule (PR-vdW2) and Wong-Sandler (PR-WS) mixing rule. Both models showed good performance in the phase equilibrium correlations and in predictions for the binary and ternary systems.  相似文献   

12.
Supercritical carbon dioxide (SC-CO2) and soxhlet extraction using was carried out to extract oil from wheat bran oil. For SC-CO2, the pressure and temperature were ranging from 10 to 30 MPa and 313.15–333.15 K. The extraction was performed in a semi batch process with a CO2 flow rate of 26.81 g/min for 2 h. Wheat bran oil was characterized to investigate the quality. Acid value (AV) and peroxide value (POV) were higher in hexane extracted oil compared to SC-CO2 extracted oil. Induction period was measured by rancimat test. The oil obtained by SC-CO2 extraction had higher capability to delay the oxidation by surrounding environment. The DPPH radical scavenging activity was also measured. The SC-CO2 extracted oil showed higher radical scavenging activity compared to hexane extracted oil.  相似文献   

13.
The solubility data of two fluorinated and non-steroidal anti-inflammatory drugs, niflumic acid (CAS No. 4394-00-7) and celecoxib (CAS No. 169590-42-5), in supercritical carbon dioxide were measured with a semi-flow type phase equilibrium apparatus at temperatures ranging from 313.2 K to 353.2 K and pressures up to 31 MPa. At the highest extraction temperature and pressure, the solubilities are 2.09 × 10−5 and 1.52 × 10−5 in mole fraction for niflumic acid and celecoxib, respectively. The saturated solubility data were correlated with the Chrastil model, the Mendez-Santiago–Teja equation, and the Peng–Robinson equation of state. The Chrastil model fitted the experimental data to about within the experimental uncertainty. The correlated results of the Mendez-Santiago–Teja model confirmed the consistency of the solubility data over the entire experimental conditions. Incorporating with two-parameter van der Waals one-fluid mixing rules, the Peng–Robinson equation of state represents satisfactorily the gas–solid equilibrium behavior of niflumic acid and celecoxib in supercritical carbon dioxide.  相似文献   

14.
Oil was extracted from the peach (Prunus persica) seeds by supercritical carbon dioxide. Principal phytosterols (stigmasterol, campesterol and β-sitosterol) that have been known to have cholesterol lowering properties were investigated in the extracted oil. Based on gas chromatography–mass spectrometry (GC–MS) analysis, β-sitosterol was identified in the peach seed oil. The effects of temperature, pressure, flow rate of supercritical CO2, mean particle size of the seeds and extraction time on the amounts of extracted oil and β-sitosterol were investigated. Supercritical fluid extractions were performed in a range of 35–55 °C, 160–240 bar, 4–8 ml CO2/min, 0.3–1.7 mm and 1–4 h for mentioned parameters. The results indicated that the amounts of oil and β-sitosterol extracted from the peach seeds were optimal with values of 35.3 g/100 g seed and 1220 mg/kg seed respectively at 40 °C, 200 bar, 7 ml/min, 0.3 mm and 3 h.  相似文献   

15.
Extraction of sunflower oil from sunflower seeds (Heliantus annuus L.) using supercritical CO2 was studied. The shrinking core model was applied to the modeling of the packed-bed extraction process. The experimental data were obtained for extraction conducted at the pressures of 20, 30, 40, 50 and 60 MPa; the temperatures of 313, 333 and 353 K, the CO2 flow rates of 1–4, and 6 cm3 CO2 min−1; the mean particle diameters of 0.23, 0.55, 1.09, 2.18 mm. The supercritical CO2 extraction process was modeled by a quasi steady state model as a function of extraction time, pressure, temperature, CO2 flow rate, and particle diameter. The supercritical CO2 extraction process. The intraparticle diffusion coefficient (effective diffusivity) De was used as adjustable parameter. The model using the best fit of De was correlated the data satisfactorily.  相似文献   

16.
In this study, the extraction of jojoba seed oil obtained from jojoba seed using both supercritical CO2 and supercritical CO2+ethanol mixtures was investigated. The recovery of jojoba seed oil was performed in a green and high-tech separation process. The extraction operating was carried out at operating pressures of 25, 35 and 45 MPa, operating temperatures of 343 and 363 K, supercritical fluid flow rates of 3.33 × 10−8, 6.67 × 10−8 and 13.33 × 10−8 m3 s−1, entrainer concentrations of 2, 4 and 8 vol.%, and average particle diameters of 4.1 × 10−4, 6.1 × 10−4, 8.6 × 10−4 and 1.2 × 10−3 m. It was found that a green chemical modifier such as ethanol could enhance the solubilities, initial extraction rate and extraction yield of jojoba seed oil from the seed matrix as compared to supercritical CO2. In addition, it was found that the solubility, the initial extraction rate and the extraction yield depended on operating pressure and operating temperature, entrainer concentration, average particle size and supercritical solvent flow rate. The solubility of jojoba seed oil and initial extraction rate increased with temperature at the operating pressures of 35 and 45 MPa and decreased with increasing temperature at the operating pressure of 25 MPa. Furthermore, supercritical fluid extraction involved short extraction time and minimal usage of small amounts entrainer to the CO2. About 80% of the total jojoba seed oil was extracted during the constant rate period at the pressure of 35 and 45 MPa.  相似文献   

17.
The high pressure phase equilibria of ethyl esters (ethyl decanoate/caprate, ethyl dodecanoate/laurate, ethyl tetradecanoate/myristate and ethyl hexadecanoate/palmitate) in supercritical ethane and propane have been measured in the temperature ranges 311–358 K (TR = 1.02–1.17) and 376–409 K (TR = 1.02–1.11), respectively. The measurements were conducted in a high pressure view cell for ethyl ester mass fractions between 0.015 and 0.65. The results show a generally linear relationship between the phase transition temperature and pressure. No temperature inversions or three phase regions were observed. An increase in hydrocarbon backbone length leads to an increase in phase transition pressure. For ethane as supercritical solvent, this increase is linear. For propane as supercritical solvent, the nature of the increase was not quantified as the magnitude of the increase would be significantly influenced by the experimental measurement error as the observed increase is not very large. Comparison of the phase behaviour of ethyl esters with methyl esters shows very little difference, yet the phase transition pressure of ethyl esters in supercritical ethane and propane is significantly lower than those of the corresponding acids. The phase transition pressure of ethyl esters in ethane and propane is also lower than those in carbon dioxide.  相似文献   

18.
Bi2O3–TiO2 composites are known to possess attractive microwave dielectric properties. However, producing LTCC analogues with equally promising dielectric properties is problematic. Here, we show that judicious choice of both TiO2 starting powders and dopants can produce composites with excellent properties. Three TiO2 powders were evaluated: 1 μm-anatase, 1 μm-rutile and a nanosized (30 nm) mixture of 75–25 anatase-rutile. The best dielectric properties were obtained by using uncalcined nanosized anatase/rutile with Bi2O3 powder. By doping this Bi2O3–TiO2 powder mixture with 0.112 wt.% CuO dielectric properties of Q × f = 9000 GHz, ɛr = 80 and τf = 0 ppm/K (at 300 K) were obtained at a sintering temperature of 915 °C.  相似文献   

19.
Three new CO2-philic open-chain organophosphorous chelating ligands, i.e. ethylene glycol bis(2-isopropoxyethyl) dimethyl diphosphate (EG2IPE), triethylene glycol bis(2-isopropoxyethyl) dimethyl diphosphate (EG3IPE), and tetraethylene glycol bis(2-isopropoxyethyl) dimethyl diphosphate (EG4IPE), were synthesized and characterized. Solubilities of these ligands in scCO2 were determined at different combinations of temperature (313.15⿿333.15 K) and pressure (9⿿20 MPa), which generally showed considerable solubility in each case. These experimental data are in agreement with computed data via a semi-empirical model, in which the average absolute relative deviations lie in the range of 4.09⿿4.95%. The effect of these ligands on supercritical fluid extraction of selected rare earth metals (La3+, Ce3+, Pr3+, Nd3+, Sm3+, Gd3+, Er3+, and Yb3+) was investigated at 313.15 K and 20 MPa. The extraction efficiency of this system was found to increase in the order EG4IPE < EG3IPE < EG2IPE with a range from 55% to 79%. The rationale behind different selectivities toward these metals was also discussed in comparison to other traditional organophosphorous agents. A detailed experimental analysis of the complexation patterns by means of a combination of IR, 1H NMR and ESI-MS has revealed that the interaction of ether oxygen group in EG4IPE with metals and the corresponding extraction mechanism.  相似文献   

20.
The partial hydrogenation of sunflower oil on a few supported Pd catalysts in supercritical (SC) dimethyl ether (DME) as reaction solvent was studied to obtain hydrogenates with low trans C 18:1 and stearic contents.The kinetics was determined on eggshell 0.5% Pd/Al2O3 and uniform 2% Pd/C catalysts using a sequential experimental design in a continuous, radial-flow, internal recycle reactor. The operating variables were temperature (456–513 K), pressure (18–23 MPa) and the space-velocity (WHSV = 41–975 h−1). The rotation frequency and the molar feed concentration (oil:H2:DME) were held constant at 157 rad/s and 1:4:95 mol%, respectively. Kinetic scheme was based on that published before. Some reactor runs were simulated using mixed-flow assumption and the kinetics data for both systems with good results. A comparison was established between the eggshell 0.5% Pd/Al2O3 in DME and the data for 2% Pd/C in propane with respect to trans production and stearic formation. trans seems to be lower using 2% Pd/C in propane, while the undesired stearic formation is less on the eggshell 0.5% Pd/Al2O3 catalyst in DME. An overview is presented on the merits of the catalysts available for the SCF process in terms of linoleic selectivity and trans yield on a few vegetable fats.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号