首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 218 毫秒
1.
为提高CO2跨临界热泵采暖系统的性能,提出了双级压缩双气冷器中间补气回热系统。结合其他3种CO2热泵系统和R134a单级压缩回热系统,通过建立热力学模型,分析各因素对系统能效的影响。此外,通过构建综合考虑初始投资成本和年运行成本的经济性评价模型,结合典型年气象参数,研究不同城市中各系统在运行周期内的总投资情况。结果表明,CO2热泵系统中,双级压缩双气冷器中间补气回热系统最优COPh最高且可以超过R134a单级压缩回热系统,在环境温度为0℃、出水/回水温度为65℃/40℃时,理论性能系数(COPh)可达2.58,比R134a系统高9.1%,比CO2单级压缩系统高22.5%,且排气温度不超过现有压缩机排气温度极限,是能效最优系统。在选定样本城市中,热泵系统运行周期内的总投资成本在上海最低,而在沈阳最高,可见总投资成本受气候区域影响较大。由于CO2压缩机成本过高,CO2热泵系统的总投资成本高于R134a系统。随着CO2热泵技术的提高和生产规模的扩大,当压缩机成本降低80%,CO2双级压缩双气冷器中间补气回热系统的总投资成本将低于R134a系统。  相似文献   

2.
王磊  张信荣 《化工进展》2022,41(1):60-66
为了探索不借助外力即可实现跨临界CO2冷热联供系统循环中工质过冷的方法,本文提出了三种采用系统循环内部工质分流实现过冷的跨临界CO2循环系统形式,建立了系统循环热力学模型,通过模拟计算分析不同工况下系统性能变化规律。结果表明:在蒸发器与节流阀间分流的系统方案不会提高系统的性能;在气体冷却器与过冷器间分流的系统方案与在过冷器与节流阀间分流的系统方案对系统性能提升的效果相同,相对于在蒸发器与节流阀间分流的系统方案,综合循环性能系数(coefficient of performance,COP)最大可提高17.62%;采用分流过冷会提高压缩机的吸气压力,当气体冷却器出口CO2温度确定时,存在最佳的排气压力使综合COP最高。因此,采用合理的分流过冷循环系统可以使跨临界CO2冷热联供系统仅依靠自身循环实现过冷并提升系统性能。  相似文献   

3.
为了研究CO2/HCs混合工质应用于热泵系统的性能,建立单级带节流阀亚临界循环和跨临界循环数学模型,分析了CO2/R170,CO2/R1270,CO2/R290,CO2/RC270 4种混合工质的特性、不同混合工质配比对循环制冷系数COP和高压压力的影响,以及蒸发温度和冷凝温度对循环性能的影响。结果表明:在亚临界循环中,性能最好的是CO2/RC270,COPc峰值为2.92,COPh峰值为3.92,质量比在0.1/0.9左右,COPc和COPh分别比其他2种工质高出了9%、26%和7.1%、18%。在跨临界循环中,CO2/R1270当质量比为0.96/0.04时,COPc最大值为3.2,COPh最大值为4.2; CO2/R290能有效降低高压压力,当循环的高压压力在7.5 MPa下时...  相似文献   

4.
在原有研究的基础上,结合实际系统,本文对CO2跨临界热泵系统的特性进行再分析,通过参数计算,分析回热温度、气体冷却器出口温度、运行压力三种因素如何影响系统性能,提出提高CO2热泵运行效率的方法。分析结果表明:回热器并不总有效,而是与气体冷却器出口温度有关,当温度小于某临界值时回热会降低系统运行制热性能系数COPh,当温度大于此临界值时回热则有助于提高COPh;对应气体冷却器出口温度存在最优压力,但实际压缩机的可承受压力是有限的,导致系统在某些气体冷却器出口温度下不能在最优压力下运行,同时在不同的排气压力下,存在气体冷却器出口温度最高限定值,否则COPh不合理也不可接受;热泵出水温度以及气体冷却器出口温度共同影响系统排气压力的选择。  相似文献   

5.
魏晋  唐黎明  亓海明  陈琪  陈光明 《化工学报》2016,67(5):1719-1724
通过在跨临界CO2系统中引入喷射器是回收系统节流损失的有效手段。实验研究了混合室直径分别为1.2、1.4、1.6 mm时,对带喷射器的跨临界CO2热泵整体性能以及喷射器自身性能的影响。整个实验中热水进口温度、蒸发温度不变,热水出口温度作为比较基准,在实验中为变量。结果表明,混合室直径对压缩机排气温度影响较小,而其对压缩机排气压力影响较大,当混合室直径为1.6 mm时,压缩机排气压力最小;当混合室直径为1.6 mm时,系统制热系数最高。  相似文献   

6.
在蒸发温度较低的工况下,CO2跨临界循环高低压差过大,运行效率下降。针对CO2跨临界循环特性,提出了一种带引射器和经济器的CO2跨临界制冷系统,通过引射器部分回收工质膨胀功减小能量损失,可增加制冷量;合理设计CO2压缩机和中间补气孔,采用经济器进行中间补气可减少系统压缩过程的能量损失。构建了热力学模型,研究表明该系统在较低蒸发温度工况下,相比于基础CO2跨临界制冷系统系统性能可提升40%左右,其中压缩机排气温度可降低40℃左右,有利于系统稳定运行。同时对准二级压缩过程中分段效率计算问题提出近似公式,在一定范围内相比于传统计算方式误差从5%降低至2%。  相似文献   

7.
在低温工况下,因跨临界循环CO2热泵系统气体冷却器的进水温度和CO2出口温度降低,压缩机吸气压力和温度随之降低。当系统的吸气压力低于压缩机的吸气压力下限时,将导致系统无法稳定运行。为了改变这种现象,采用在气体冷却器冷水入口处混水的方法,将热水箱的热水旁通至气体冷却器冷水入口。采用三通调节阀调节混水比例,适当提高气体冷却器的进水温度,以期实现系统在低温工况下的稳定运行。实验测试结果表明,采用混水方法不仅可保证低温工况下跨临界循环CO2空气源热泵热水系统的稳定运行,同时可降低结霜频率,延长系统运行时间,但系统的制热量和COP将小幅下降。兼顾系统的热力性能及运行稳定性,当环境温度为-20℃、制热温度为60℃时,较为适宜的混水温度为12~18℃。  相似文献   

8.
跨临界CO_2热泵因其出色的环保性和节能性在近年来得到了国内外的广泛关注。由于CO_2工质特性的影响,工质的气冷器出口状态对系统性能的影响很大。针对带回热器的空气源跨临界CO_2热泵热水系统,通过调节节流阀开度来改变压缩机排气压力,对工质气冷器出口状态的变化规律及其对系统产生的影响进行了实验研究。结果表明:在一定的排气压力范围内,气冷器工质出口温度先短暂升高,然后快速下降,最终趋于稳定。受到气冷器工质出口状态变化的影响,系统制热性能系数(COP)存在最优值。当气冷器工质出口温度接近进水温度后,系统达到最大制热量。此外,控制适宜的气冷器工质出口温度可以使系统的COP和制热量均取得较大值。研究结果对带回热器的跨临界CO_2热泵系统的设计和深入研究具有参考意义。  相似文献   

9.
大功率二氧化碳热泵热水系统运行性能   总被引:4,自引:0,他引:4       下载免费PDF全文
在小功率CO2热泵热水器的基础上设计与构建了一种大功率跨临界循环CO2热泵热水系统。在该跨临界循环CO2热泵热水系统中, 采用二级冷却套管式CO2气体冷却器、双毛细管并联组合节流及设置回热器等技术途径, 用以提高系统的热力性能。在恒温环境实验室中测试分析了气候参数及运行参数对跨临界循环CO2热泵热水系统稳态热力性能的影响。各种典型气候条件下系统日平均运行性能的测试结果表明, 根据气候条件合理地选取运行参数, 该系统具有优良的热力性能。系统的制热温度可在60~85℃选取, 在环境温度为4.1~27.3℃的气候条件下日平均性能系数(COP)在3.45~4.04之间。  相似文献   

10.
提出了一种基于高温超临界喷气增焓技术的新型CO2热泵循环,以显著提升跨临界CO2热泵在高温循环加热工况下的制热性能。通过建立超临界喷气增焓型高温CO2热泵系统的数值模型,并采用EES(engineering equation solver)软件对该热泵系统的循环加热性能进行了仿真分析。研究了在较高气体冷却器出口温度下,蒸发温度、压缩机中间压力、气体冷却器压力等参数对单位容积制热量和性能系数(COP)的影响。结果表明:在最优排气压力下,气体冷却器出口温度高达60℃时,该热泵循环的COP也能达到3.0左右;相对于普通喷气增焓系统,COP明显提高;相对于无喷气增焓的常规系统,在气体冷却器出口温度为60℃时,相对补气量为0.3、0.4、0.5的超临界喷气增焓系统COP分别提高了14.8%、21.2%、29.2%;气体冷却器压力和中间压力对系统COP的影响变化趋势一致,但气体冷却器压力的影响更为显著;此外,存在最优的气体冷却器压力和中间压力使系统COP达到最大,在气体冷却器出口温度为60℃,相对补气量为0.4时,最优气体冷却器压力和中间压力分别为13.5MPa和8.5MPa。  相似文献   

11.
跨临界二氧化碳热泵喷射循环实验   总被引:6,自引:4,他引:2  
邹春妹  岑继文  刘培  蒋方明 《化工学报》2016,67(4):1520-1526
在跨临界CO2热泵热水器系统中引入优化设计的喷射器,对系统进行实验研究,分析了制热系数、引射比、升压比、喷射器效率等参数随热水体积流量和出口温度及高压侧压力的变化趋势以及优化设计的喷射器对系统的影响。实验结果表明:随着热水体积流量减小或其出口温度增加,引射比将逐渐减小,而喷射器效率逐渐升高;在测试工况范围内升压比基本保持不变,系统COPh最高将近3.5;系统高压侧的压力因优化喷射器的引入而明显降低,有利于系统的安全运行;跨临界二氧化碳热泵喷射循环系统存在一个最优运行压力,值得注意的是在最优运行压力下,热水出水温度虽未达到最高,但依旧超过55℃。系统稳定运行在最优高压侧压力下,不仅系统性能大幅度提高,而且保证了热水的出水温度。  相似文献   

12.
热泵蒸汽技术相比电锅炉及燃煤、燃气锅炉制取蒸汽,具有更高的一次能源利用效率,并且不产生CO2和NOx,符合我国节能环保发展战略。本文提出一种基于蒸汽压缩技术的热泵蒸汽系统,采用两级冷凝直接制取低压蒸汽,再通过蒸汽压缩升压至0.7MPa。并基于EES软件建立数值模型,分析冷凝温度Tcond、蒸发温度Tevap、经济器温度Tecon、喷气率βg对冷媒压缩机功耗Wrefri、蒸汽压缩机功耗Wvapor和系统能效系数COP的影响。结果如下:基于蒸汽压缩的热泵蒸汽系统,制取165℃的饱和蒸汽,在Tevap为50℃、Tcond为93℃时,系统COP为2.996,制取1t蒸汽消耗功率仅为247kW·h;系统COP随Tevap的升高逐渐增大,但是Tevap的升高需要更高的热源温度;蒸发温度不变时,系统存在最佳的Tcond、中间冷却温度Tecon和喷气率βg,当蒸发温度Tevap为50℃,最佳冷凝温度Tcond为93℃时,最佳经济器温度Tecon为65℃,最佳喷气率βg为0.13。  相似文献   

13.
CO2跨临界喷射制冷循环计算分析   总被引:1,自引:0,他引:1       下载免费PDF全文
王菲  杨勇  沈胜强 《化工学报》2013,64(7):2400-2404
目前还很少有关于CO2跨临界喷射式制冷循环的研究。本文对CO2跨临界喷射制冷循环建立了热力学模型,计算了在不同的冷却压力、冷却器出口温度、加热器压力、加热器出口温度及蒸发温度下,喷射器的喷射系数、跨临界喷射制冷循环性能系数(COP)和有效性能系数(COPm)的变化趋势。结果表明:随着冷却器压力的升高,喷射器的喷射系数减小,循环的COP 和COPm值先增大后减小,在某个冷却压力下存在最优值;提高冷却器的出口温度,循环的COP 和COPm值均降低;提高加热器压力、加热器出口温度及蒸发温度均能增大喷射器的喷射系数和循环的COPm值。  相似文献   

14.
李亚飞  邓建强  何阳 《化工学报》2022,73(7):2912-2923
跨临界CO2在高速膨胀时,压力和温度剧烈下降,会发生非平衡相变。其中在天然气超声速分离设备和超临界CO2离心压缩机中CO2会发生非平衡冷凝相变;在引射膨胀制冷系统中,跨临界CO2在引射器主动喷嘴中发生非平衡闪蒸相变。为解决跨临界CO2在膨胀过程中物性变化剧烈,非平衡相变模拟困难的问题,构建了新型非平衡相变CFD模型,以研究跨临界CO2在超声速缩放喷嘴中的非平衡冷凝和非平衡闪蒸的相变过程和膨胀机理,模型耦合了温度驱动的蒸发-冷凝相变机制和压力驱动的空化-冷凝相变机制,并用文献中的试验结果验证了模型的准确性。研究结果表明,在冷凝相变过程中,由压力驱动的冷凝传质具有主要影响,压力驱动的冷凝传质主要存在于喷嘴喉部与内流区域,温度驱动的冷凝传质主要存在于喷嘴渐扩段壁面。冷凝传质速率随着进口压力的增加和进口温度的降低而增加,从而使冷凝的非平衡程度和喷嘴内的干度降低,喷嘴渐扩段内达到声速的位置也相应延后。在闪蒸相变过程中,由温度驱动的蒸发传质占据主导,蒸发相变主要发生在喷嘴喉部附近,空化相变主要发生在喷嘴渐扩段,两相CO2在喷嘴的渐扩段达到声速。随着喷嘴进口压力的增加和进口温度的降低,闪蒸的非平衡程度增加,使喷嘴内的干度减小。本研究有助于厘清跨临界CO2快速膨胀中的非平衡闪蒸和冷凝相变机理,并为跨临界CO2膨胀设备的分析和优化设计提供参考。  相似文献   

15.
李亚飞  邓建强  何阳 《化工学报》1951,73(7):2912-2923
跨临界CO2在高速膨胀时,压力和温度剧烈下降,会发生非平衡相变。其中在天然气超声速分离设备和超临界CO2离心压缩机中CO2会发生非平衡冷凝相变;在引射膨胀制冷系统中,跨临界CO2在引射器主动喷嘴中发生非平衡闪蒸相变。为解决跨临界CO2在膨胀过程中物性变化剧烈,非平衡相变模拟困难的问题,构建了新型非平衡相变CFD模型,以研究跨临界CO2在超声速缩放喷嘴中的非平衡冷凝和非平衡闪蒸的相变过程和膨胀机理,模型耦合了温度驱动的蒸发-冷凝相变机制和压力驱动的空化-冷凝相变机制,并用文献中的试验结果验证了模型的准确性。研究结果表明,在冷凝相变过程中,由压力驱动的冷凝传质具有主要影响,压力驱动的冷凝传质主要存在于喷嘴喉部与内流区域,温度驱动的冷凝传质主要存在于喷嘴渐扩段壁面。冷凝传质速率随着进口压力的增加和进口温度的降低而增加,从而使冷凝的非平衡程度和喷嘴内的干度降低,喷嘴渐扩段内达到声速的位置也相应延后。在闪蒸相变过程中,由温度驱动的蒸发传质占据主导,蒸发相变主要发生在喷嘴喉部附近,空化相变主要发生在喷嘴渐扩段,两相CO2在喷嘴的渐扩段达到声速。随着喷嘴进口压力的增加和进口温度的降低,闪蒸的非平衡程度增加,使喷嘴内的干度减小。本研究有助于厘清跨临界CO2快速膨胀中的非平衡闪蒸和冷凝相变机理,并为跨临界CO2膨胀设备的分析和优化设计提供参考。  相似文献   

16.
李恩腾  徐英杰  谢小东  范伟 《化工进展》2020,39(5):1657-1666
针对跨临界CO2热泵成本过高与占用空间大等问题,提出了一种基于经济性与实用性的数据驱动跨临界CO2热泵多目标优化设计方法。本文通过对跨临界CO2热泵进行性能模拟获得大量的驱动数据,然后经由BP神经网络构建跨临界CO2热泵的热力学预测模型,并且从投资、运营、环境以及空间占用等多角度建立跨临界CO2热泵的多目标优化模型。最后以住宅用户最关心的总年度成本与水箱容积为设计优化目标,通过精英策略非支配排序遗传算法(NSGA-Ⅱ)与TOPSIS决策法进行最优设计方案求解。案例研究表明,占用空间小、总年度成本低的最优设计方案的水箱体积为0.235m3、总年度成本为958.1USD/a。且通过分析设计参数对优化目标的影响,发现水箱保温层厚度的影响主要集中在一个较优区域,水箱直径与高度的影响较大,而气冷器换热温差的影响较小。  相似文献   

17.
李慧  曹祥  张春路 《化工进展》2016,35(Z2):421-426
CO2跨临界热泵循环,其制冷剂工质为CO2,不可燃,无毒,无刺激性气味,零臭氧层破坏能力(ODP=0)以及微乎其微的温室效应(GWP=1)而对环境无害,可从工业生产中回收,逐渐成为被广泛应用的热泵技术。本文从国内外CO2热泵技术的研究现状及应用现状出发,总结概述了目前典型的CO2热泵循环系统应用案例,如单级压缩供给加用热水系统、双级压缩带中间补气供给家用热水系统、家用供暖及供给热水于一体的双热泵单元家电辅热系统、大型公用建筑用CO2热泵系统,并从系统层面对影响CO2热泵循环系统效率的相关热力学参数进行循环分析,如水箱进出水温度、气冷器水流量、系统的制冷剂充注量等参数的控制。以期为未来CO2热泵技术在中国的发展、进一步研究和应用设计提供一些参考和依据。  相似文献   

18.
CO2跨临界热泵系统热力性能优化,往往其设备的初始投资成本会增加,在设备生命周期内其对总体费用的影响不明确。本文建立了常规CO2跨临界热泵系统(BASE)、CO2双级压缩热泵系统(TSCHPS)和CO2/CO2机械过冷热泵系统(MSHPS)的热力学与经济学模型,其中在经济学模型中定义了综合考虑设备初投资及运行费用的目标函数,研究了3种热泵系统在小温差风机盘管、地暖以及暖气片作为散热终端下热力性与经济性之间的关系,讨论了系统升级后的生命周期经济性变化。研究结果表明:在3种散热终端的系统名义工况下,TSCHPS、MSHPS的能效比(COP)均比BASE系统提升15%以上,但其生命周期经济性却不一定得到改善;BASE系统热力性与经济性之间相互关联,TSCHPS、MSHPS的热力性与经济性之间关联性不强;系统升级后的经济性变化与蒸发温度及供热量有关,给出了3种散热终端下不同应用范围内经济性最优系统。  相似文献   

19.
单机双级滚动活塞压缩机热泵系统的性能特性   总被引:4,自引:2,他引:2       下载免费PDF全文
刘琦  马国远  许树学 《化工学报》2013,64(10):3599-3605
将R410A为工质的单机双级滚动活塞压缩机闪发器系统用于房间空调器,能有效地降低排气温度、提升制冷/制热能力,具有显著的节能效果。通过对单机双级滚动活塞压缩机闪发器热泵系统的分析计算,得出压缩机适宜的高低压腔容积比为4/5。对研制出的样机进行了实验研究,结果表明,在蒸发温度为5℃,冷凝温度为35~45℃的工况下,制冷COPr最高可达3.81,排气温度低于91℃;蒸发温度为-5~-10℃,冷凝温度为40℃时,制热COPh最高可达3.38,排气温度低于111℃。  相似文献   

20.
利用中间补气技术将单缸滚动转子式压缩机应用于空气源热泵系统中,系统地研究以R410A为冷媒的热泵系统在变频、变补气压力工况下制热性能的变化规律。实验结果表明:中间补气系统的制热量及系统功率均随着压缩机频率f、中间补气压力pinj的增加呈上升趋势,同频率下系统功率则以线性方式增长,而系统制热量随着补气压力及频率的增大,其相对增长率逐渐减小。因此COPh在低频时存在最佳补气压力,而在高频时无极值点;与单级压缩系统相比,在800~1200 kPa、50~80 Hz范围内,中间补气系统的制热量、功率、COPh最大提升分别为27.55%、30.75%、7.1%。随着频率及补气压力的增加,系统COPh下降,因此中间补气技术应与合理的控制策略相结合,可使中间补气系统达到节能高效的目的。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号