首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Parkinson’s disease (PD) is a neurodegenerative disorder, caused by, so far, unknown pathogenetic mechanisms. There is no doubt that pro-inflammatory immune-mediated mechanisms are pivotal to the pathogenicity and progression of the disease. In this review, we highlight the binary role of microglia activation in the pathophysiology of the disorder, both neuroprotective and neuromodulatory. We present how the expression of several cytokines implicated in dopaminergic neurons (DA) degeneration could be used as biomarkers for PD. Viral infections have been studied and correlated to the disease progression, usually operating as trigger factors for the inflammatory process. The gut–brain axis and the possible contribution of the peripheral bowel inflammation to neuronal death, mainly dopaminergic neurons, seems to be a main contributor of brain neuroinflammation. The role of the immune system has also been analyzed implicating a-synuclein in the activation of innate and adaptive immunity. We also discuss therapeutic approaches concerning PD and neuroinflammation, which have been studied in experimental and in vitro models and data stemming from epidemiological studies.  相似文献   

2.
The exact mechanism underlying selective dopaminergic neurodegeneration is not completely understood. The complex interplay among toxic alpha-synuclein aggregates, oxidative stress, altered intracellular Ca2+-homeostasis, mitochondrial dysfunction and disruption of mitochondrial integrity is considered among the pathogenic mechanisms leading to dopaminergic neuronal loss. We herein investigated the molecular mechanisms leading to mitochondrial dysfunction and its relationship with activation of the neuroinflammatory process occurring in Parkinson’s disease. To address these issues, experiments were performed in vitro and in vivo in mice carrying the human mutation of α-synuclein A53T under the prion murine promoter. In these models, the expression and activity of NCX isoforms, a family of important transporters regulating ionic homeostasis in mammalian cells working in a bidirectional way, were evaluated in neurons and glial cells. Mitochondrial function was monitored with confocal microscopy and fluorescent dyes to measure mitochondrial calcium content and mitochondrial membrane potential. Parallel experiments were performed in 4 and 16-month-old A53T-α-synuclein Tg mice to correlate the functional data obtained in vitro with mitochondrial dysfunction and neuroinflammation through biochemical analysis. The results obtained demonstrated: 1. in A53T mice mitochondrial dysfunction occurs early in midbrain and later in striatum; 2. mitochondrial dysfunction occurring in the midbrain is mediated by the impairment of NCX3 protein expression in neurons and astrocytes; 3. mitochondrial dysfunction occurring early in midbrain triggers neuroinflammation later into the striatum, thus contributing to PD progression during mice aging.  相似文献   

3.
Parkinson’s disease (PD) is a complex and progressive neurodegenerative disorder with a prevalence of approximately 0.5–1% among those aged 65–70 years. Although most of its clinical manifestations are due to a loss of dopaminergic neurons, the PD etiology is largely unknown. PD is caused by a combination of genetic and environmental factors, and the exact interplay between genes and the environment is still debated. Several biological processes have been implicated in PD, including mitochondrial or lysosomal dysfunctions, alteration in protein clearance, and neuroinflammation, but a common molecular mechanism connecting the different cellular alterations remains incompletely understood. Accumulating evidence underlines a significant role of lipids in the pathological pathways leading to PD. Beside the well-described lipid alteration in idiopathic PD, this review summarizes the several lipid alterations observed in experimental models expressing PD-related genes and suggests a possible scenario in relationship to the molecular mechanisms of neuronal toxicity. PD could be considered a lipid-induced proteinopathy, where alteration in lipid composition or metabolism could induce protein alteration—for instance, alpha-synuclein accumulation—and finally neuronal death.  相似文献   

4.
All nervous system pathologies (e.g., neurodegenerative/demyelinating diseases and brain tumours) develop neuroinflammation, a beneficial process during pathological events, aimed at removing damaged cells, toxic agents, and/or pathogens. Unfortunately, excessive inflammation frequently occurs during nervous system disorders, becoming a detrimental event capable of enhancing neurons and myelinating glial cell impairment, rather than improving their survival and activity. Consequently, targeting the neuroinflammation could be relevant for reducing brain injury and rescuing neuronal and glial cell functions. Several studies have highlighted the role of acetylcholine and its receptors in the regulation of central and peripheral inflammation. In particular, α7 nicotinic receptor has been described as one of the main regulators of the “brain cholinergic anti-inflammatory pathway”. Its expression in astrocytes and microglial cells and the ability to modulate anti-inflammatory cytokines make this receptor a new interesting therapeutic target for neuroinflammation regulation. In this review, we summarize the distribution and physiological functions of the α7 nicotinic receptor in glial cells (astrocytes and microglia) and its role in the modulation of neuroinflammation. Moreover, we explore how its altered expression and function contribute to the development of different neurological pathologies and exacerbate neuroinflammatory processes.  相似文献   

5.
The physiological balance between excitation and inhibition in the brain is significantly affected in Alzheimer’s disease (AD). Several neuroactive compounds and their signaling pathways through various types of receptors are crucial in brain homeostasis, among them glutamate and γ-aminobutyric acid (GABA). Activation of microglial receptors regulates the immunological response of these cells, which in AD could be neuroprotective or neurotoxic. The novel research approaches revealed the complexity of microglial function, including the interplay with other cells during neuroinflammation and in the AD brain. The purpose of this review is to describe the role of several proteins and multiple receptors on microglia and neurons, and their involvement in a communication network between cells that could lead to different metabolic loops and cell death/survival. Our review is focused on the role of glutamatergic, GABAergic signaling in microglia–neuronal cross-talk in AD and neuroinflammation. Moreover, the significance of AD-related neurotoxic proteins in glutamate/GABA-mediated dialogue between microglia and neurons was analyzed in search of novel targets in neuroprotection, and advanced pharmacological approaches.  相似文献   

6.
7.
Hericium erinaceus (HE) is a common edible mushroom consumed in several Asian countries and considered to be a medicinal mushroom with neuroprotective effects. Erinacine A (EA) is a bioactive compound in Hericium erinaceus mycelium (HEM) that has been shown to have a neuroprotective effect against neurodegenerative diseases, e.g., Parkinson’s disease (PD). Although the etiology of PD is still unclear, neuroinflammation may play an important role in causing dopaminergic neuron loss, which is a pathological hallmark of PD. However, glial cell activation has a close relationship with neuroinflammation. Thus, this study aimed to investigate the anti-neuroinflammatory and neuroprotective effects of EA on lipopolysaccharide (LPS)-induced glial cell activation and neural damage in vitro and in vivo. For the in vitro experiments, glial cells, BV-2 microglial cells and CTX TNA2 astrocytes were pretreated with EA and then stimulated with LPS and/or IFN-γ. The expression of proinflammatory factors in the cells and culture medium was analyzed. In addition, differentiated neuro-2a (N2a) cells were pretreated with EA or HEM and then stimulated with LPS-treated BV-2 conditioned medium (CM). The cell viability and the amount of tyrosine hydroxylase (TH) and mitogen-activated protein kinases (MAPKs) were analyzed. In vivo, rats were given EA or HEM by oral gavage prior to injection of LPS into the substantia nigra (SN). Motor coordination of the rats and the expression of proinflammatory mediators in the midbrain were analyzed. EA pretreatment prevented LPS-induced iNOS expression and NO production in BV-2 cells and TNF-α expression in CTX TNA2 cells. In addition, both EA and HEM pretreatment significantly increased cell viability and TH expression and suppressed the phosphorylation of JNK and NF- κB in differentiated N2a cells treated with CM. In vivo, both EA and HEM significantly improved motor dysfunction in the rotarod test and the amphetamine-induced rotation test and reduced the expression of TNF-α, IL-1β and iNOS in the midbrain of rats intranigrally injected with LPS. The results demonstrate that EA ameliorates LPS-induced neuroinflammation and has neuroprotective properties.  相似文献   

8.
Progressive degeneration of neurons and aggravation of dopaminergic neurons in the substantia nigra pars compacta results in the loss of dopamine in the brain of Parkinson’s disease (PD) patients. Numerous therapies, exhibiting transient efficacy have been developed; however, they are mostly accompanied by side effects and limited reliability, therefore instigating the need to develop novel optimistic treatment targets. Significant therapeutic targets have been identified, namely: chaperones, protein Abelson, glucocerebrosidase-1, calcium, neuromelanin, ubiquitin-proteasome system, neuroinflammation, mitochondrial dysfunction, and the kynurenine pathway (KP). The role of KP and its metabolites and enzymes in PD, namely quinolinic acid (QUIN), kynurenic acid (KYNA), 3-hydroxykynurenine (3-HK), 3-hydroxyanthranillic acid (3-HAA), kunurenine-3-monooxygenase (KMO), etc. has been reported. The neurotoxic QUIN, N-methyl-D-aspartate (NMDA) receptor agonist, and neuroprotective KYNA—which antagonizes QUIN actions—primarily justify the Janus-faced role of KP in PD. Moreover, KP has been reported to play a biomarker role in PD detection. Therefore, the authors detail the neurotoxic, neuroprotective, and immunomodulatory neuroactive components, alongside the upstream and downstream metabolic pathways of KP, forming a basis for a therapeutic paradigm of the disease while recognizing KP as a potential biomarker in PD, thus facilitating the development of a suitable target in PD management.  相似文献   

9.
Locus Coeruleus (LC) is the main noradrenergic nucleus of the central nervous system, and its neurons widely innervate the whole brain. LC is severely degenerated both in Alzheimer’s disease (AD) and in Parkinson’s disease (PD), years before the onset of clinical symptoms, through mechanisms that differ among the two disorders. Several experimental studies have shown that noradrenaline modulates neuroinflammation, mainly by acting on microglia/astrocytes function. In the present review, after a brief introduction on the anatomy and physiology of LC, we provide an overview of experimental data supporting a pathogenetic role of LC degeneration in AD and PD. Then, we describe in detail experimental data, obtained in vitro and in vivo in animal models, which support a potential role of neuroinflammation in such a link, and the specific molecules (i.e., released cytokines, glial receptors, including pattern recognition receptors and others) whose expression is altered by LC degeneration and might play a key role in AD/PD pathogenesis. New imaging and biochemical tools have recently been developed in humans to estimate in vivo the integrity of LC, the degree of neuroinflammation, and pathology AD/PD biomarkers; it is auspicable that these will allow in the near future to test the existence of a link between LC-neuroinflammation and neurodegeneration directly in patients.  相似文献   

10.
The accumulation of aggregated α-synuclein (αSyn) is a hallmark of Parkinson’s disease (PD). Current evidence indicates that small soluble αSyn oligomers (αSynOs) are the most toxic species among the forms of αSyn aggregates, and that size and topological structural properties are crucial factors for αSynOs-mediated toxicity, involving the interaction with either neurons or glial cells. We previously characterized a human αSynO (H-αSynO) with specific structural properties promoting toxicity against neuronal membranes. Here, we tested the neurotoxic potential of these H-αSynOs in vivo, in relation to the neuropathological and symptomatic features of PD. The H-αSynOs were unilaterally infused into the rat substantia nigra pars compacta (SNpc). Phosphorylated αSyn (p129-αSyn), reactive microglia, and cytokine levels were measured at progressive time points. Additionally, a phagocytosis assay in vitro was performed after microglia pre-exposure to αsynOs. Dopaminergic loss, motor, and cognitive performances were assessed. H-αSynOs triggered p129-αSyn deposition in SNpc neurons and microglia and spread to the striatum. Early and persistent neuroinflammatory responses were induced in the SNpc. In vitro, H-αSynOs inhibited the phagocytic function of microglia. H-αsynOs-infused rats displayed early mitochondrial loss and abnormalities in SNpc neurons, followed by a gradual nigrostriatal dopaminergic loss, associated with motor and cognitive impairment. The intracerebral inoculation of structurally characterized H-αSynOs provides a model of progressive PD neuropathology in rats, which will be helpful for testing neuroprotective therapies.  相似文献   

11.
Parkinson’s disease (PD) is one of the most common neurodegenerative disorders. The exact causes of neuronal damage are unknown, but mounting evidence indicates that mitochondrial-mediated pathways contribute to the underlying mechanisms of dopaminergic neuronal cell death both in PD patients and in PD animal models. Mitochondria are organized in a highly dynamic tubular network that is continuously reshaped by opposing processes of fusion and fission. Defects in either fusion or fission, leading to mitochondrial fragmentation, limit mitochondrial motility, decrease energy production and increase oxidative stress, thereby promoting cell dysfunction and death. Thus, the regulation of mitochondrial dynamics processes, such as fusion, fission and mitophagy, represents important mechanisms controlling neuronal cell fate. In this review, we summarize some of the recent evidence supporting that impairment of mitochondrial dynamics, mitophagy and mitochondrial import occurs in cellular and animal PD models and disruption of these processes is a contributing mechanism to cell death in dopaminergic neurons. We also summarize mitochondria-targeting therapeutics in models of PD, proposing that modulation of mitochondrial impairment might be beneficial for drug development toward treatment of PD.  相似文献   

12.
Previously, we have found that mildronate [3-(2,2,2-trimethylhydrazinium) propionate dihydrate], a small molecule with charged nitrogen and oxygen atoms, protects mitochondrial metabolism that is altered by inhibitors of complex I and has neuroprotective effects in an azidothymidine-neurotoxicity mouse model. In the present study, we investigated the effects of mildronate in a rat model of Parkinson's disease (PD) that was generated via a unilateral intrastriatal injection of the neurotoxin 6-hydroxydopamine (6-OHDA). We assessed the expression of cell biomarkers that are involved in signaling cascades and provide neural and glial integration: the neuronal marker TH (tyrosine hydroxylase); ubiquitin (a regulatory peptide involved in the ubiquitin-proteasome degradation system); Notch-3 (a marker of progenitor cells); IBA-1 (a marker of microglial cells); glial fibrillary acidic protein, GFAP (a marker of astrocytes); and inducible nitric oxide synthase, iNOS (a marker of inflammation). The data show that in the 6-OHDA-lesioned striatum, mildronate completely prevented the loss of TH, stimulated Notch-3 expression and decreased the expression of ubiquitin, GFAP and iNOS. These results provide evidence for the ability of mildronate to control the expression of an array of cellular proteins and, thus, impart multi-faceted homeostatic mechanisms in neurons and glial cells in a rat model of PD. We suggest that the use of mildronate provides a protective effect during the early stages of PD that can delay or halt the progression of this neurodegenerative disease.  相似文献   

13.
High-caloric diet and physical inactivity predispose individuals to obesity and diabetes, which are risk factors of hippocampal neurodegeneration and cognitive deficits. Along with the adipose-hippocampus crosstalk, chronically inflamed adipose tissue secretes inflammatory cytokine could trigger neuroinflammatory responses in the hippocampus, and in turn, impairs hippocampal neuroplasticity under obese and diabetic conditions. Hence, caloric restriction and physical exercise are critical non-pharmacological interventions to halt the pathogenesis from obesity to hippocampal neurodegeneration. In response to physical exercise, peripheral organs, including the adipose tissue, skeletal muscles, and liver, can secret numerous exerkines, which bring beneficial effects to metabolic and brain health. In this review, we summarized how chronic inflammation in adipose tissue could trigger neuroinflammation and hippocampal impairment, which potentially contribute to cognitive deficits in obese and diabetic conditions. We also discussed the potential mechanisms underlying the neurotrophic and neuroprotective effects of caloric restriction and physical exercise by counteracting neuroinflammation, plasticity deficits, and cognitive impairments. This review provides timely insights into how chronic metabolic disorders, like obesity, could impair brain health and cognitive functions in later life.  相似文献   

14.
15.
Nitric oxide (NO) is a neurotransmitter that mediates the activation and inhibition of inflammatory cascades. Even though physiological NO is required for defense against various pathogens, excessive NO can trigger inflammatory signaling and cell death through reactive nitrogen species-induced oxidative stress. Excessive NO production by activated microglial cells is specifically associated with neuroinflammatory and neurodegenerative conditions, such as Alzheimer’s and Parkinson’s disease, amyotrophic lateral sclerosis, ischemia, hypoxia, multiple sclerosis, and other afflictions of the central nervous system (CNS). Therefore, controlling excessive NO production is a desirable therapeutic strategy for managing various neuroinflammatory disorders. Recently, phytochemicals have attracted considerable attention because of their potential to counteract excessive NO production in CNS disorders. Moreover, phytochemicals and nutraceuticals are typically safe and effective. In this review, we discuss the mechanisms of NO production and its involvement in various neurological disorders, and we revisit a number of recently identified phytochemicals which may act as NO inhibitors. This review may help identify novel potent anti-inflammatory agents that can downregulate NO, specifically during neuroinflammation and neurodegeneration.  相似文献   

16.
Alzheimer’s disease (AD) is increasingly recognized as a highly heterogeneous disorder occurring under distinct clinical and neuropathological phenotypes. Despite the molecular determinants of such variability not being well defined yet, microglial cells may play a key role in this process by releasing distinct pro- and/or anti-inflammatory cytokines, potentially affecting the expression of the disease. We carried out a neuropathological and biochemical analysis on a series of AD brain samples, gathering evidence about the heterogeneous involvement of microglia in AD. The neuropathological studies showed differences concerning morphology, density and distribution of microglial cells among AD brains. Biochemical investigations showed increased brain levels of IL-4, IL-6, IL-13, CCL17, MMP-7 and CXCL13 in AD in comparison with control subjects. The molecular profiling achieved by measuring the brain levels of 25 inflammatory factors known to be involved in neuroinflammation allowed a stratification of the AD patients in three distinct “neuroinflammatory clusters”. These findings strengthen the relevance of neuroinflammation in AD pathogenesis suggesting, in particular, that the differential involvement of neuroinflammatory molecules released by microglial cells during the development of the disease may contribute to modulate the characteristics and the severity of the neuropathological changes, driving—at least in part—the AD phenotypic diversity.  相似文献   

17.
Over recent years, several investigations have suggested that Parkinson’s disease (PD) can be regarded as the consequence of a bowel disorder. Indeed, gastrointestinal symptoms can occur at all stages of this neurodegenerative disease and in up to a third of cases, their onset can precede the involvement of the central nervous system. Recent data suggest that enteric glial cells (EGCs) may play a major role in PD-related gastrointestinal disturbances, as well as in the development and progression of the central disease. In addition to their trophic and structural functions, EGCs are crucial for the homeostatic control of a wide range of gastrointestinal activities. The main purpose of this review was to provide a detailed overview of the role of EGCs in intestinal PD-associated alterations, with particular regard for their participation in digestive and central inflammation as well as the dynamic interactions between glial cells and intestinal epithelial barrier. Accumulating evidence suggests that several pathological intestinal conditions, associated with an impairment of barrier permeability, may trigger dysfunctions of EGCs and their shift towards a proinflammatory phenotype. The reactive gliosis is likely responsible for PD-related neuroinflammation and the associated pathological changes in the ENS. Thus, ameliorating the efficiency of mucosal barrier, as well as avoiding IEB disruption and the related reactive gliosis, might theoretically prevent the onset of PD or, at least, counteract its progression.  相似文献   

18.
Aging is associated with a decline in cognitive function, which can partly be explained by the accumulation of damage to the brain cells over time. Neurons and glia undergo morphological and ultrastructure changes during aging. Over the past several years, it has become evident that at the cellular level, various hallmarks of an aging brain are closely related to mitophagy. The importance of mitochondria quality and quantity control through mitophagy is highlighted by the contribution that defects in mitochondria–autophagy crosstalk make to aging and age-related diseases. In this review, we analyze some of the more recent findings regarding the study of brain aging and neurodegeneration in the context of mitophagy. We discuss the data on the dynamics of selective autophagy in neurons and glial cells during aging and in the course of neurodegeneration, focusing on three mechanisms of mitophagy: non-receptor-mediated mitophagy, receptor-mediated mitophagy, and transcellular mitophagy. We review the role of mitophagy in neuronal/glial homeostasis and in the molecular pathogenesis of neurodegenerative disorders, such as Parkinson’s disease, Alzheimer’s disease, and other disorders. Common mechanisms of aging and neurodegeneration that are related to different mitophagy pathways provide a number of promising targets for potential therapeutic agents.  相似文献   

19.
Background: The prevention of age-related neurodegenerative disorders is an important issue in an aging society. Microglia-mediated neuroinflammation resulting in dopaminergic neuron loss may lead to the pathogenesis of Parkinson’s disease (PD). Lipopolysaccharide (LPS), an endotoxin, induces neuroinflammatory microglial activation, contributing to dopaminergic neuron damage. Diosgenin is a phytosteroid sapogenin with a wide spectrum of pharmacological activities, e.g., anti-inflammatory activity. However, the preventive effect of diosgenin on neuroinflammation is not clear. Thus, in this study, we further investigated the neuroprotective effect of diosgenin on LPS-induced neural damage in vitro and in vivo. Methods: For in vitro experiments, primary mesencephalic neuron-glia cultures and primary microglia cultures isolated from Sprague–Dawley rats were used. Cells were pretreated with diosgenin and then stimulated with LPS. The expression of proinflammatory cytokines or tyrosine hydroxylase (TH) in the cells was analyzed. In vivo, rats were fed a diet containing 0.1% (w/w) diosgenin for 4 weeks before being administered a unilateral substantia nigra (SN) injection of LPS. Four weeks after the LPS injection, the rats were assessed for lesion severity using the amphetamine-induced rotation test and TH immunohistochemistry. Results: Diosgenin pretreatment prevented LPS-induced neurite shortening in TH-positive neurons in mesencephalic neuron-glia cultures. In addition, pretreatment of primary microglia with diosgenin significantly reduced tumor necrosis factor-α (TNF-α) and inducible nitric oxide synthase (iNOS) expression. Moreover, diosgenin pretreatment significantly suppressed LPS-induced extracellular signal-regulated kinase (ERK) activation. In vivo, the intranigral injection of LPS in rats fed a diosgenin-containing diet significantly improved motor dysfunction and reduced TH expression in SN. Conclusion: These results support the effectiveness of diosgenin in protecting dopaminergic neurons from LPS-induced neuroinflammation.  相似文献   

20.
Neurodegenerative diseases may have distinct genetic etiologies and pathological manifestations, yet share common cellular mechanisms underpinning neuronal damage and dysfunction. These cellular mechanisms include excitotoxicity, calcium dysregulation, oxidative damage, ER stress and neuroinflammation. Recent data have identified a dual role in these events for glial cells, such as microglia and astrocytes, which are able both to induce and to protect against damage induced by diverse stresses. Cyclo(His-Pro), a cyclic dipeptide derived from the hydrolytic removal of the amino-terminal pyroglutamic acid residue of the hypothalamic thyrotropin-releasing hormone, may be important in regulating the nature of the glial cell contribution. Cyclo(His-Pro) is ubiquitous in the central nervous system and is a key substrate of organic cation transporters, which are strongly linked to neuroprotection. The cyclic dipeptide can also cross the brain-blood-barrier and, once in the brain, can affect diverse inflammatory and stress responses by modifying the Nrf2-NF-κB signaling axis. For these reasons, cyclo(His-Pro) has striking potential for therapeutic application by both parenteral and oral administration routes and may represent an important new tool in counteracting neuroinflammation-based degenerative pathologies. In this review, we discuss the chemistry and biology of cyclo(His-Pro), how it may interact with the biological mechanisms driving neurodegenerative disease, such as amyotrophic lateral sclerosis, and thereby act to preserve or restore neuronal function.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号