首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 140 毫秒
1.
The solvent evaporation and multiple phase methods for preparing poly-(d, l) lactide microspheres of bovine serum albumin (BSA) were compared. The effects of poly (vinyl alcohol) concentration and external aqueous phase temperature on the loading efficient of BSA microspheres prepared by multiple phase emulsion method were evaluated as well. The BSA loading efficient of microspheres by multiple phase emulsion method was much higher than that by solvent evaporation method. The high aqueous solubility of BSA contributes to the low loading efficieny in the solvent evaporation method, suggesting that this method is inappropriate for proteins with high water solubility. The loading efficieny of microspheres, whcih were prepared by multiple phase emulsion method, increased with PVA concentration but decreased with external aqueous phase temperature. The burst phenomenon of release profiles of microspheres was influenced by poly (vinyl alcohol) concentrations and the external aqueous phase temperature. Considering the duration sustained release, 0.5% w/v of poly (vinyl alcohol) is most appropriate among the concentrations tested for preparing BSA microspheres by multiple phase emulsion method.  相似文献   

2.
The solvent evaporation and multiple phase methods for preparing poly-(d, l) lactide microspheres of bovine serum albumin (BSA) were compared. The effects of poly (vinyl alcohol) concentration and external aqueous phase temperature on the loading efficient of BSA microspheres prepared by multiple phase emulsion method were evaluated as well. The BSA loading efficient of microspheres by multiple phase emulsion method was much higher than that by solvent evaporation method. The high aqueous solubility of BSA contributes to the low loading efficieny in the solvent evaporation method, suggesting that this method is inappropriate for proteins with high water solubility. The loading efficieny of microspheres, whcih were prepared by multiple phase emulsion method, increased with PVA concentration but decreased with external aqueous phase temperature. The burst phenomenon of release profiles of microspheres was influenced by poly (vinyl alcohol) concentrations and the external aqueous phase temperature. Considering the duration sustained release, 0.5% w/v of poly (vinyl alcohol) is most appropriate among the concentrations tested for preparing BSA microspheres by multiple phase emulsion method.  相似文献   

3.
Biodegradable hydrophilic gelatin nanoparticles, containing different initial amounts of methotrexate (MTX), were prepared using a simple solvent evaporation technique based on a single water-in-oil emulsion and stabilized by the use of glutaraldehyde as cross-linking agent. The effects of several parameters on particle size, drug encapsulation efficiency and drug release were investigated. Size and shape of the nanoparticles were examined by scanning electron microscopy. The release of MTX was monitored in vitro and the mechanism of release was studied. Particles with a mean diameter of 100–200 nm were produced, which were able to release MTX following a diffusion-controlled mechanism of release. It was observed that the initial amount of MTX used for sample loading did not have any effect on the pattern of release, while it affected the amount of drug entrapped into the nanoparticles and also both the release rate and the total amount of drug released.  相似文献   

4.
This work was aimed to design and optimize a long acting microsphere-based injectable formulation of aripiprazole by using D-optimal experimental design methodology. Microspheres were prepared by solvent evaporation method using PLGA and cholesterol as release rate retardant materials. The microspheres were characterized for their encapsulation efficiency, particle size, surface morphology, residual solvent content, and drug release behavior. Contour plots were plotted to study the encapsulation and release behaviour of the drug from the microspheres. Desirability technique was used for the optimization of microsphere formulation composition. By using an optimum blend of drug and cholesterol in the microsphere formulation it was possible to attain a consistent drug release for a period of 14 days. The results have confirmed that the D-optimal experimental design technique can be successfully employed for designing the long acting microsphere dosage form.  相似文献   

5.
Aim: The aim of this study was to prepare insulin-loaded poly(lactic acid)–polyethylene glycol microspheres that could control insulin release at least for 1 week and evaluate their in vivo performance in a streptozotocin-induced diabetic rat model. Methods: The microspheres were prepared using a water-in-oil-in-water double emulsion solvent evaporation technique. Different formulation variables influencing the yield, particle size, entrapment efficiency, and in vitro release profiles were investigated. The pharmacokinetic study of optimized formulation was performed with single dose in comparison with multiple dose of Humulin® 30/70 as a reference product in streptozotocin-induced diabetic rats. Results: The optimized formulation of insulin microspheres was nonporous, smooth-surfaced, and spherical in structure under scanning electron microscope with a mean particle size of 3.07 ×μm and entrapment efficiency of 42.74% of the theoretical amount incorporated. The in vitro insulin release profiles was characterized by a bimodal behavior with an initial burst release because of the insulin adsorbed on the microsphere surface, followed by slower and continuous release corresponding to the insulin entrapped in polymer matrix. Conclusions: The optimized formulation and reference were comparable in the extent of absorption. Consequently, these microspheres can be proposed as new controlled parenteral delivery system.  相似文献   

6.
探索青风藤总生物碱微球(CSA-MS)的制备方法并优化制备工艺.采用乳化-溶剂挥发法制备CSA-MS,紫外分光光度法测定MS的包封率和栽药量,扫描电镜观察MS的形貌,粒径测定仪测MS粒径分布情况,并测试药物的体外释放情况.结果显示,MS外观圆整,平均粒径为(21.5±1.22)μm.正交实验优化了MS的制备工艺,其优化...  相似文献   

7.
The aim of the present study was to verify the potential of chitosan-thio-butyl-amidine (TBA) microspheres as carrier systems for controlled drug delivery. In this study microspheres were prepared utilizing water in oil (w/o) emulsification solvent evaporation technique. A concentration of 0.5% of chitosan-TBA conjugate displaying 100 µM thiol groups per gram polymer was used in the aqueous phase of the emulsion in order to prepare microspheres. The obtained non-aggregated free-flowing microspheres were examined with conventional light microscope as well as scanning electron microscopy (SEM). The microscopic images indicated that the prepared chitosan-TBA microspheres were of spherical shape and smooth surface while microparticles obtained from the unmodified chitosan were of porous structure and non-spherical shape. Particle size distribution was determined to be in the range from 1 to 59 µm. The free thiol group content of chitosan-TBA microspheres prepared with an aqueous phase of pH 2, 5, and 6.5 were determined to be 71.4, 49.4, and 8.2 µM/g polymer, respectively. Furthermore, results attained from in vitro release studies with fluorescein isothiocyanate labelled dextran (FITC-dextran) loaded chitosan-TBA microspheres showed a controlled release rate for more than three hours while the control reached the maximum peak level of release already within an hour. According to these results, chitosan-TBA microspheres seem to be a promising tool in transmucosal drug delivery for poorly absorbed therapeutic agents.  相似文献   

8.
The aim of the present study was to verify the potential of chitosan-thio-butyl-amidine (TBA) microspheres as carrier systems for controlled drug delivery. In this study microspheres were prepared utilizing water in oil (w/o) emulsification solvent evaporation technique. A concentration of 0.5% of chitosan-TBA conjugate displaying 100 µM thiol groups per gram polymer was used in the aqueous phase of the emulsion in order to prepare microspheres. The obtained non-aggregated free-flowing microspheres were examined with conventional light microscope as well as scanning electron microscopy (SEM). The microscopic images indicated that the prepared chitosan-TBA microspheres were of spherical shape and smooth surface while microparticles obtained from the unmodified chitosan were of porous structure and non-spherical shape. Particle size distribution was determined to be in the range from 1 to 59 µm. The free thiol group content of chitosan-TBA microspheres prepared with an aqueous phase of pH 2, 5, and 6.5 were determined to be 71.4, 49.4, and 8.2 µM/g polymer, respectively. Furthermore, results attained from in vitro release studies with fluorescein isothiocyanate labelled dextran (FITC-dextran) loaded chitosan-TBA microspheres showed a controlled release rate for more than three hours while the control reached the maximum peak level of release already within an hour. According to these results, chitosan-TBA microspheres seem to be a promising tool in transmucosal drug delivery for poorly absorbed therapeutic agents.  相似文献   

9.
Background: The aim of this study was to develop chitosan microspheres for nasal delivery of ondansetron hydrochloride (OND). Method: Microspheres were prepared with spray-drying method using glutaraldehyde as the crosslinking agent. Microspheres were characterized in terms of morphology, particle size, zeta potential, production yield, drug content, encapsulation efficiency, and in vitro drug release. Results: All microspheres were spherical in shape with smooth surface and positively charged. Microspheres had also high encapsulation efficiency and the suitable particle size for nasal administration. In vitro studies indicated that all crosslinked microspheres had a significant burst effect, and sustained drug release pattern was observed until 24 hours following burst drug release. Nasal absorption of OND from crosslinked chitosan microspheres was evaluated in rats, and pharmacokinetic parameters of OND calculated from nasal microsphere administration were compared with those of both nasal and parenteral administration of aqueous solutions of OND. In vivo data also supported that OND-loaded microspheres were also able to attain a sustained plasma profile and significantly larger area under the curve values with respect to nasal aqueous solution of OND. Conclusion: Based on in vitro and in vivo data, it could be concluded that crosslinked chitosan microspheres are considered as a nasal delivery system of OND.  相似文献   

10.
Abstract

Enteric-coated epichlorohydrin crosslinked dextran microspheres containing 5-Fluorouracil (5-FU) for colon drug delivery was prepared by emulsification-crosslinking method. The formulation variables studied includes different molecular weights of dextran, volume of crosslinking agent, stirring speed, time and temperature. Dextran microspheres showed mean entrapment efficiencies ranging between 77 and 87% and mean particle size ranging between 10 and 25?µm. About 90% of drug was released from uncoated dextran microspheres within 8?h, suggesting the fast release and indicated the drug loaded in uncoated microspheres, released before they reached colon. Enteric coating (Eudragit-S-100 and Eudragit-L-100) of dextran microspheres was performed by oil-in-oil solvent evaporation method. The release study of 5-FU from coated dextran microspheres was complete retardation in simulated gastric fluid (pH 1.2) and once the coating layer of enteric polymer was dissolved at higher pH (7.4 and 6.8), a controlled release of the drug from the microspheres was observed. Further, the release of drug was found to be higher in the presence of dextranase and rat caecal contents, indicating the susceptibility of dextran microspheres to colonic enzymes. Organ distribution and pharmacokinetic study in albino rats was performed to establish the targeting potential of optimized formulation in the colon.  相似文献   

11.
The aim of this study was to prepare poly(d, l-lactide) (PLA) microspheres containing naltrexone (NTX) by a solvent evaporation method, and to evaluate both in vitro and in vivo release characteristics and histopathological findings of tissue surrounding an implant formulation in rats.

This method enabled the preparation of microspheres of regular shape and relatively narrow particle size distribution. The in vitro release profiles of NTX from PLA microspheres showed the release of NTX did not follow zero-order kinetics. An initial burst release was observed, subsequently followed by a nearly constant rate of 0.4% per day after ten days. The cumulative amount of NTX released at the end of 60 days was 80%. Compressed microspheres showed near zero-order sustained release of NTX for 360 days. The plasma NTX levels in rats showed that for compressed microspheres NTX concentrations were constant and exceeded 2 ng/mL for 28 days. Throughout the 28 days of study, the implantations cause a minor inflammatory response, which can be regarded as a normal defence mechanism. The sustained release performance of NTX from the biodegradable depot systems may provide a reliable, convenient, and safe mechanism for the administration of NTX for the long-term treatment of opioid dependence.  相似文献   

12.
Opiate addiction is a serious problem that has now spread worldwide to all levels of society. Buprenorphine has been used for several years for the treatment of opiate addiction. The objective of this project was to develop sustained-release biodegradable microcapsules for the parenteral delivery of buprenorphine. Biodegradable microcapsules of buprenorphine/poly(lactide-co-glycolide) were prepared using two main procedures based on an in-water drying process in a complex emulsion system. These procedures differ in the way the organic solvent was eliminated: evaporation or extraction. The effect of drug loading and the effect of partial saturation of the aqueous phase with the core material during the in-water solvent evaporation were also studied. The efficiency of encapsulation increased from 11% to 34% when the drug loading was decreased from 20% to 5%. There was no significant change in the efficiency of encapsulation when the aqueous phase was partially saturated with buprenorphine. In changing the solvent removal process from evaporation to extraction, no significant change in the efficiency of encapsulation was observed. The microcapsules prepared by the solvent evaporation were smooth and spherical. However, the microcapsules prepared by the extraction of the organic solvent lost their surface smoothness and became slightly irregular and porous compared with the other batches. The average particle size of the microcapsules was between 14 and 49 microns. The cumulative drug release was between 2% and 4% within the first 24 hr. A sustained drug release continued over 45 days.  相似文献   

13.
Novel ethyl cellulose/chitosan microspheres (ECCMs) were prepared by the method of w/o/w emulsion and solvent evaporation. The microspheres were spherical, adhesive, and aggregated loosely with a size not bigger than 5 pm. The drug loading efficiency of berberine hydrochloride (BH) loaded in microspheres were affected by chitosan (CS) concentration, EC concentration and the volume ratio of V(CS)/V(EC). ECCMs prepared had sustained release efficiency on BH which was changed with different preparation parameters. In addition, the pH value of release media had obvious effect on the release character of ECCMs. The release rate of BH from sample B was only a little more than 30% in diluted hydrochloric acid (dHCl) and that was almost 90% in PBS during 24 h. Furthermore, the drug release data were fitted to different kinetic models to analyze the release kinetics and the mechanism from the microspheres. The released results of BH indicated that ECCMs exhibited non-Fickian diffusion mechanism in dHCI and diffusion-controlled drug release based on Fickian diffusion in PBS. So the ECCMs might be an ideal sustained release system especially in dHCl and the drug release was governed by both diffusion of the drug and dissolution of the polymeric network.  相似文献   

14.
The conjugate microspheres (Chi-glu-FUR-m) were prepared by the dry-in-oil method using chitosan-5-fuorouridine conjugate. Chi-glu-FUR-m were characterized by drug content, particle shape and size, swelling property, and drug release. Their characteristics were compared with those of the simple microspheres (Chi/ FUR-m), which were prepared under similar conditions using a mixture of chitosan and 5-fluorouridine. Both microspheres prepared showed a high retention of the drug after preparation and similar particle size and shape. Swelling ratios after incubation in aqueous buflers of pH 7.4 for 6 hr were similar for both microspheres. Chi-glu-FUR-m swelled quickly in aqueous buffers of pH 7.4 and the disintegration was observed to occur gradually from 24 hr afrer the incubation. Chi-glu-FUR-m showed a gradual drug release (50% release time = 61 hr), while Chi/FUR-m released the drug very rapidly, Such characteristics of Chi-glu-FURm as swelling, slow disintegration, and gradual drug release propose its usefulness for localization or chemoembolization therapy.  相似文献   

15.
目的:优化BSA-PLGA微球制备工艺,并对其包封率、形态、体外释放药物及微球包裹前后BSA的稳定性进行评价。方法:以PLGA为载体,采用复乳溶剂挥发法制备BSA-PLGA微球。Micro BCA法测定微球的包封率和载药量,扫描电子显微镜观察微球的形态,激光粒度仪测定粒度及分布,聚丙烯酰胺凝胶电泳(SDS-PAGE)研究微球包裹前后BSA分子结构的完整性,同时考察体外释药性能。结果:根据优化工艺制备的微球外观圆整,平均粒径(2275.8±256.9)nm,包封率(82.59±2.92)%,载药量(13.76±0.49)×10-2%,包裹前后BSA结构稳定,体外释放28天以上,释放曲线符合Higuchi方程。结论:本研究获得了较优化的BSA-PLGA微球制备工艺,所制备的微球具有较高的包封率和明显的缓释效果。  相似文献   

16.
ABSTRACT

The aim of this study was to prepare poly(d, l-lactide) (PLA) microspheres containing naltrexone (NTX) by a solvent evaporation method, and to evaluate both in vitro and in vivo release characteristics and histopathological findings of tissue surrounding an implant formulation in rats.

This method enabled the preparation of microspheres of regular shape and relatively narrow particle size distribution. The in vitro release profiles of NTX from PLA microspheres showed the release of NTX did not follow zero-order kinetics. An initial burst release was observed, subsequently followed by a nearly constant rate of 0.4% per day after ten days. The cumulative amount of NTX released at the end of 60 days was 80%. Compressed microspheres showed near zero-order sustained release of NTX for 360 days. The plasma NTX levels in rats showed that for compressed microspheres NTX concentrations were constant and exceeded 2 ng/mL for 28 days. Throughout the 28 days of study, the implantations cause a minor inflammatory response, which can be regarded as a normal defence mechanism. The sustained release performance of NTX from the biodegradable depot systems may provide a reliable, convenient, and safe mechanism for the administration of NTX for the long-term treatment of opioid dependence.  相似文献   

17.
The PEGylated derivatives of rosin-PD-1 and PD-2 synthesized and characterized earlier (Nande et al., 2006) were investigated as potential materials for sustained release microsphere prepared by emulsion solvent evaporation method using diclofenac sodium (DCS) as model drug. All the microspheres exhibited smooth surfaces intercepted by pores; their sizes (d(90)) ranged between 11-24 microm. The entrapment efficiency (< 80%) of the microspheres increased proportionally with derivative concentration. Presence of solvent like isopropyl alcohol or dichloromethane rendered the microspheres with large sizes but with reduced drug entrapment. Microspheres with small size were obtained at an optimum viscosity of liquid paraffin; any change lead to increase in the particle size. Magnesium stearate was found to be most suitable detackifier in the present system. The drug release was directly related to the particle size--small sized microspheres released drug at a faster rate. The dissolution data complied with Higuchi equation while the mechanism of drug release was Fickian diffusion (n approximately 0.5). Controlled inhibition of edema, as tested by hind paw edema method, was observed for 10 h when the microspheres were administered intraperitoneally. The present study found the derivatives as promising materials for preparing microspheres for sustained delivery of DCS.  相似文献   

18.
The aim of the present work was to prepare floating microspheres of atenolol as prolonged release multiparticulate system and evaluate it using novel multi-compartment dissolution apparatus. Atenolol loaded floating microspheres were prepared by emulsion solvent evaporation method using 32 full factorial design. Formulations F1 to F9 were prepared using two independent variables (polymer ratio and % polyvinyl alcohol) and evaluated for dependent variables (particle size, percentage drug entrapment efficiency and percentage buoyancy). The formulation(F8) with particle size of 329?±?2.69 µm, percentage entrapment efficiency of 61.33% and percentage buoyancy of 96.33% for 12?h was the of optimized formulation (F8). The results of factorial design revealed that the independent variables significantly affected the particle size, percentage drug entrapment efficiency and percentage buoyancy of the microspheres. In vitro drug release study revealed zero order release from F8 (98.33% in 12?h). SEM revealed the hollow cavity and smooth surface of the hollow microspheres.  相似文献   

19.
Background: If erythromycin is micronized into microspheres with suitable particle size, it can improve pulmonary drug concentration to maximize its effectiveness and minimize the adverse side effects. Aim: In this study, erythromycin gelatin microspheres (EM-GMS) were prepared and some characteristics of EM‐GMS were investigated. The drug-targeting index (DTI) of EM-GMS was evaluated to predict their potential as a targeted delivery system. Method: Erythromycin was microencapsulated with gelatin by a double emulsion solvent evaporation method. Some characteristics of EM-GMS, including morphology, particle size, in vitro release, and safety were researched. Results: EM-GMS had a spherical shape and smooth surface morphology. The drug loading and encapsulation efficiency of EM-GMS were 13.56 ± 0.25% and 55.82 ± 2.23%, respectively. The release of erythromycin from EM-GMS showed an initial burst and following a sustained release, with an accumulate release of 80% at 4 hours. The EM-GMS was safe since there was no vein irritation and no hemolysis on the erythrocyte of rabbit at 3.5 mg/mL and a LD50 of 173.07 mg/kg. After administering EM-GMS to rabbits, the concentration of erythromycin in lung was 15.92 times higher than that in plasma and the DTI of EM-GMS in lung was 6.65 as compared with erythromycin lactobionate. Conclusions: The preparation technology of EM-GMS for lung targeting was successful and the quality of microspheres was good.  相似文献   

20.
Salbutamol sulphate loaded Bovine serum albumin microspheres were prepared by heat denaturation method. The effects of such preparation conditions as denaturation temperature, denaturation time, protein concentration and phase volume ratio on the extent of drug loading, size and size distribution and drug release were studied. An increase in protein concentration from 5% w/v to 15% w/v increased the mean particle size from 8.5 μm to 16.6 μm and decreased the drug loading from 46% w/w to 18% w/w. A decrease in the phase volume ratio substantially lowered mean particle size and size distribution. An increase in the severity of denaturaion conditions lowered both the drug incorporated and drug released. The kinetics of drug release from microspheres were compared to the theoretical models of Higuchi diffusional release and first order release. Both the models gave an adequate fit to the data. Scanning electron microscopy revealed that the dummy microspheres are spherical with smooth surfaces. As the drug-protein ratio increased, the microspheres exhibited rough surfaces showing the presence of drug crystals.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号