首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
This paper details the study of La2O3 modifications and their effect on the stability of a NiO–CaO/Al2O3 sorption complex catalyst used in the ReSER (reactive sorption enhanced reforming) process of hydrogen production. The La2O3-modified NiO–CaO/Al2O3 sorption complex catalyst was prepared by isometric impregnation. The microstructure, morphology and reducibility of the La2O3-modified sorption complex catalyst were characterized by means of BET, TEM, XRD and TPR. The stability of the catalyst used in the ReSER process was evaluated on a laboratory-scale fixed-bed reactor. Our results showed that modifying the sorption complex catalyst with La2O3 improved its stability up to 30 cycles of the ReSER process for hydrogen production, while only seven cycles were obtained without La2O3 modification. We showed that the source of the stability improvement that the La2O3 in the catalyst not only functioned to restrain the decrease of the support surface area and reduce the sintering of nano-CaCO3, which could limit the decay of the sorption capacity and stability of the catalyst, but also increased the interaction between nickel oxide and the support, which improved the stability of the catalyst by increasing the dispersion of nickel grains and inhibited the growth of nickel grain size.  相似文献   

2.
Dehydrogenation of organic chemical hydrides has been improved by reconstructing the catalyst in the form of hierarchical porous structure nanocatalyst, in which the economical Ni was adopted as catalytic component and nano Al2O3–TiO2 hybrid composite as support. The Al2O3–TiO2 composite was prepared by spontaneous self-assembly of nano Al2O3 and TiO2 aggregates by hydrolysis of tetra-n-butyl-titanate under continuous agitation. The multi-scaled distribution of Al2O3–TiO2 aggregates with hierarchy could be observed in dynamic light scattering spectrometer. The aggregates are comprised of nano-sized γ-Al2O3 and anatase TiO2 crystallites with sizes of about 5 and 7 nm, respectively. The surface modulation by TiO2 could be verified in FTIR Spectra. The migration of Ti species and crystallite growth were hindered by the Al2O3 skeleton and the hierarchical porous structure was sustained during the thermal related process. The multi-scaled distributed pores were confirmed by both TEM analysis and N2 adsorption results. The results of dehydrogenation experiments showed that the hierarchical porous structure nano Ni/Al2O3–TiO2 exhibited superior catalytic performance to Ni/Al2O3 with the optimum conversion of 99.9% at 400 °C, while the catalyst of Ni/Al2O3 exhibited only 16.5% under the same condition.  相似文献   

3.
Selective catalytic reduction (SCR) of NO from simulated flue gas by ammonia with Fe2O3 particles as the catalyst was performed using a magnetically fluidized bed (MFB). X-ray diffraction (XRD) spectroscopy and Brunauer–Emmett–Teller (BET) method were used to analyze Fe2O3 catalyst. Important effects of magnetic fields were observed in the SCR of NO by ammonia over Fe2O3 catalyst. The apparent activation energies of SCR were reduced by external magnetic fields, and the SCR activity of Fe2O3 catalyst was improved with the magnetic fields at low temperatures. Thus the scope of temperature with high efficiency of NO removal was extended from 493–523 K to 453–523 K by magnetic fields. Magnetic fields of 0.01–0.015 T were suggested for NO removal on Fe2O3 catalyst with MFB. The results suggested that the magnetoadsorption of NO onto Fe2O3 surface together with NH2 and NO free radicals effects induced by the external magnetic fields both acted to improve the rate of SCR of NO on Fe2O3 catalyst. On the other hand, magnetic field effects were also attributed to improved gas–solid contact in MFB.  相似文献   

4.
Abstract

Photocatalytic nanomaterials are attracting more and more attention because of their potential for solving environmental problems. ZnO, as one of the most promising photocatalysts, can only be excited by ultraviolet (UV) or near UV radiation. The objective of the study is to describe an efficient visible light driven ZnO based photocatalyst. In this regard, we communicate the preliminary research on the synthesis, characterisation and photocatalytic properties of ZnO–Bi2O3/graphene oxide (GO) composite materials. It was found that the photodegradation of methylene blue in the presence of ZnO–Bi2O3/GO reached 99·62% after irradiation with visible light for 2 h. The presence of GO enhances the stability of ZnO–Bi2O3 and reduces the recombination of charge carriers. ZnO–Bi2O3/GO also shows high photocatalytic activity for the degradation of acid blue, acid yellow, reactive red, acid red, reactive yellow and reactive blue under visible light irradiation. The novel aspect is the combination of GO and Bi2O3 doped ZnO. The use of GO enhances the efficiency of photocatalysis, and Bi2O3 doping ZnO excites the absorption of visible light. The impact of the research concerns the study of ZnO–Bi2O3/GO, which can be used as a promising photocatalyst for the treatment of textile wastewater.  相似文献   

5.
Bioethanol was reformed in supercritical water (SCW) at 500 °C and 25 MPa on Ni/Al2O3 and Ni/CeZrO2/Al2O3 catalysts to produce high-pressure hydrogen. The results were compared with non-catalytic reactions. Under supercritical water and in a non-catalytic environment, ethanol was reformed to H2, CO2 and CH4 with small amounts of CO and C2 gas and liquid products. The presence of either Ni/Al2O3 or Ni/CeZrO2/Al2O3 promoted reactions of ethanol reforming, dehydrogenation and decomposition. Acetaldehyde produced from the decomposition of ethanol was completely decomposed into CH4 and CO, which underwent a further water-gas shift reaction in SCW. This led to great increases in ethanol conversion and H2 yield on the catalysts of more than 3-4 times than that of the non-catalytic condition. For the catalytic operation, adding small amounts of oxygen at oxygen to ethanol molar ratio of 0.06 into the feed improved ethanol conversion, at the expense of some H2 oxidized to water, resulting in a slightly lower H2 yield. The ceria-zirconia promoted catalyst was more active than the unpromoted catalyst. On the promoted catalyst, complete ethanol conversion was achieved and no coke formation was found. The ceria-zirconia promoter has important roles in improving the decomposition of acetaldehyde, the enhancement of the water-gas shift as well as the methanation reactions to give an extremely low CO yield and a tremendously high H2/CO ratio. The SCW environment for ethanol reforming caused the transformation of gamma-alumina towards the corundum phase of the alumina support in the Ni/Al2O3 catalyst, but this transformation was slowed down by the presence of the ceria-zirconia promoter.  相似文献   

6.
The purpose of this study is to investigate the effects of mixing three kinds of zeolites (MFI, MOR, and BEA) with the dimethyl ether steam reforming(DME-SR) Cu/γ-Al2O3 catalyst to improve H2 yield at low temperatures, and to identify the de-NOx performance of a combined system of SR catalyst and Lean NOx Trap(LNT). The SR catalyst was prepared by the impregnation method, and a commercialized LNT catalyst was used. The SR reaction experiment was conducted to investigate the effect of the coexistence of CO2, O2, NO, and NO2 among the exhaust gases of the DME engine on the H2 yield. The study found that the proper mixing of Cu/γ-Al2O3 and zeolite increased the H2 yield at low temperature improving DME hydrolysis. The variation in the H2 yield according to the kinds of zeolite in the SR catalyst was due to the characteristics of zeolite. The Cu10/γ-Al2O3 catalyst mixed with 10% MOR showed the highest H2 yield. A combined system of SR and LNT uses the H2 generated mainly from the Cu-based catalyst using the DME-SR reaction for the LNT. When H2 generated from the SR (Cu10/γ-Al2O3 + MOR10) catalyst was used as the reductant of LNT, the NOx conversion at 350 °C or below was improved up to 15% compared to when DME was used. This demonstrates that H2 as the reductant of LNT is more beneficial than DME. The H2 generated from the SR catalyst can be used as the reductant of LNT in an after-treatment system. Meanwhile, the SR catalyst that was mixed with zeolite caused the carbon deposition, but the combined system of SR + LNT caused no carbon deposition because the carbon deposited on the SR catalyst reacted with O2 during the lean-operating period.  相似文献   

7.
Bilayer photoanodes were prepared onto glass substrates (FTO) in order to improve generated photocurrents using UV-vis light by water splitting process. A comparative study of photocatalytic was performed over the films surface using Fe2O3, WO3 and mixture of bicomponents (Fe2O3:WO3). Different types of films were prepared using Fe2O3, WO3 and bicomponents (mixture) on FTO substrates. The films were grown by sol gel method with the PEG-300 as the structure-directing agent. The photo-generated of the samples were determined by measuring the currents and voltages under illumination of UV-vis light. The morphology, structure and related composition distribution of the films have been characterized by SEM, XRD and EDX respectively. Photocurrent measurements indicated surface roughness as the effective parameter in this study. The deposited surfaces by bicomponents or mixture are flat without any feature on the surface while the deposited surfaces by WO3 appears rough surface as small round (egg-shaped particles) and cauliflower-like. The surface deposited by Fe2O3 show rough no as well as WO3 surface. The deposited surfaces by WO3 reveal the higher value of photocurrent measurement due to surface roughness. Indeed, the roughness can be effective in increasing contact surface area between film and electrolyte and diffuse reflection (light scattering effect). The solution (Fe2O3:WO3) shows the low photocurrent value in compare to WO3 and Fe2O3 hat it may be due to decomposition the compound at 450 ± 1 °C to iron-tungstate Fe2(WO4)3.  相似文献   

8.
A highly selective hydrogen (H2) sensor has been successfully developed by using an yttria-stabilized zirconia (YSZ)-based mixed-potential-type sensor utilizing SnO2 (+30 wt.% YSZ) sensing electrode (SE) with an intermediate Al2O3 barrier layer which was coated with a catalyst layer of Cr2O3. The sensor utilizing SnO2 (+30 wt.% YSZ)-SE was found to be capable of detecting H2 and propene (C3H6) sensitively at 550 °C. In order to enhance the selectivity towards H2, a selective C3H6 oxidation catalyst was employed to minimize unwanted responses caused by interfering gases. Among the examined metal oxides, Cr2O3 facilitated the selective oxidation of C3H6. However, the addition or lamination of Cr2O3 to SnO2 (+30 wt.% YSZ)-SE was found to diminish the sensing responses to all examined gases. Therefore, an intermediate layer of Al2O3 was sandwiched between the SE layer and the catalyst layer to prevent the penetration of Cr2O3 particles into the SE layer. The sensor using SnO2 (+30 wt.% YSZ)-SE coated with a catalyst layer of Cr2O3 as well as an intermediate layer of Al2O3 exhibited a sensitive response toward H2, with only minor responses toward other examined gases at 550 °C under humid conditions (21 vol.% O2 and 1.35 vol.% H2O in N2 balance). A linear relationship was observed between sensitivity and H2 concentration in the range of 20–800 ppm on a logarithmic scale. The results of sensing performance evaluation and polarization curve measurements indicate that the sensing mechanism is based on the mixed-potential model.  相似文献   

9.
In this study, novel sodium titanate (Na2Ti3O7) nanotube/Nafion® composite membranes were prepared by a solution casting method. The properties of these composite membranes were studied using Fourier transform infrared spectroscopy (FTIR) and scanning electron microscopy (SEM). Additionally, the water uptake, methanol permeability, proton conductivity, and selectivity of the composite membranes were measured to evaluate the applicability of these membranes in DMFCs. It was found that the addition of Na2Ti3O7 nanotubes enhanced the water uptake and reduced the methanol permeability of the composite membranes. The proton conductivity and methanol permeability depend on the Na2Ti3O7 nanotube content. Using the selectivity, the optimal nanotube contents was found to be 5 wt%. The new composite membrane was found to have significantly higher selectivity than a pure Nafion® membrane and thus has good potential to outperform Nafion® in DMFCs.  相似文献   

10.
Cu–Ni/γ-Al2O3 catalysts with different metal contents for dimethyl ether steam reforming (DME SR) were prepared by the method of deposition–precipitation. Characterization of specific surface area measurement (BET), X-ray diffraction (XRD) and hydrogen temperature-programmed reduction (H2-TPR) revealed that nickel improved the dispersion of copper, increased the interaction between copper and γ-Al2O3, and therefore, inhibited the sintering of copper. Ammonia temperature-programmed desorption (NH3-TPD) showed that metal particles could occupy the acid sites, leading to the decrease in acid amount and acid strength of Cu–Ni/γ-Al2O3 catalyst. Kinetic measurements indicated that γ-Al2O3 is vital for DME SR and a higher content of γ-Al2O3 in catalyst was needed. The addition of nickel suppressed the water gas shift (WGS) reaction. Initial durability testing showed that the conversion of DME over Cu–Ni/γ-Al2O3 catalyst was always almost complete during the 30 h experimental reaction time. Therefore, Cu–Ni/γ-Al2O3 could be a potential DME SR catalyst for the production of hydrogen.  相似文献   

11.
Alumina supported nickel (Ni/Al2O3), nickel–cobalt (Ni–Co/Al2O3) and cobalt (Co/Al2O3) catalysts containing 15% metal were synthesized, characterized and tested for the reforming of CH4 with CO2 and CH4 cracking reactions. In the Ni–Co/Al2O3 catalysts Ni–Co alloys were detected and the surface metal sites decreased with decrease in Ni:Co ratio. Turnover frequencies of CH4 were determined for both reactions. The initial turnover frequencies of reforming (TOFDRM) for Ni–Co/Al2O3 were greater than that for Ni/Al2O3, which suggested a higher activity of alloy sites. The initial turnover frequencies for cracking (TOFCRK) did not follow this trend. The highest average TOFDRM, H2:CO ratio and TOFCRK were observed for a catalyst containing a Ni:Co ratio of 3:1. This catalyst also had the maximum carbon deposited during reforming and produced the maximum reactive carbon during cracking. It appeared that carbon was an intermediate product of reforming and the best catalyst was able to most effectively crack CH4 and oxidize carbon to CO by CO2.  相似文献   

12.
Ni/Y2O3, with Y2O3 support prepared by the conventional precipitation method, was prepared by an impregnation method. The physicochemical properties of Y2O3 and Ni/Y2O3 were characterized by BET, CO2-TPD, NH3-TPD, TPR, XRF and TGA, and compared with those of γ-Al2O3 and Ni/γ-Al2O3, respectively. The catalytic performance of Ni/Y2O3 in the reaction of partial oxidation of methane (POM) to syngas was evaluated and compared with that of Ni/γ-Al2O3 catalyst, too. The results showed that, Y2O3 was a basic support with few acidic sites while γ-Al2O3 was an acidic support. NiO particles supported on Y2O3 were more easily to be reduced than those supported on γ-Al2O3. In the partial oxidation of methane, Ni/Y2O3 catalyst showed high catalytic activity and exhibited better catalytic stability than Ni/γ-Al2O3. After POM reaction at 700 °C for 550 h, methane conversion decreased little and only 2.2 wt% carbon was deposited on Ni/Y2O3 catalyst. Ni/Y2O3 was stable in POM even after a series of reaction temperature variations within the temperature range of 400 ∼ 800 °C.  相似文献   

13.
Ni/xY2O3–Al2O3 (x = 5, 10, 15, 20 wt%) catalysts were prepared by sequential impregnation synthesis. The catalytic performance for the autothermal reforming of methane was evaluated and compared with Ni/γ-Al2O3 catalyst. The physicochemical properties of catalysts were characterized by X-ray diffraction (XRD), Transmission electron microscope (TEM), X-Ray Photoelectron Spectrometer (XPS), Thermo Gravimetric Analyzer (TGA) and H2-temperature programmed reduction techniques (TPR). The decrease of nickel particle size and the change of reducibility were found with Y modification. The CH4 conversion increased with elevating levels of Y2O3 from 5% to 10%, then decreased with Y content from 10% to 20%. Ni/xY2O3–Al2O3 catalysts maintained high activity after 24 h on stream, while Ni/Al2O3 had a significant deactivation. The characterization of spent catalysts indicated that the addition of Y retarded Ni sintering and decreased the amount of coke.  相似文献   

14.
The Pd/C catalysts with and without a small amount of La2O3 were synthesized by a simple reduction reaction with sodium borohydride in aqueous solution. The structure and morphology of these catalysts were characterized by X-ray diffraction, energy dispersive X-ray spectroscopy and transmission electron microscopy. The electrocatalytic performance of these catalysts for methanol oxidation in alkaline media was investigated using cyclic voltammetry, chronoamperometry and CO stripping experiments. The results show that the Pd–La2O3/C catalyst has a higher catalytic activity than the Pd/C catalyst, but the effect of La2O3 cannot be explained by a bi-functional mechanism. X-Ray photoelectron spectroscopy analyses suggest that the higher content of metallic Pd caused by the addition of La2O3 contributes to the better catalytic activity of Pd–La2O3/C. Based on the good electrocatalytic performance of Pd–La2O3/C, the Pd–La2O3 catalyst supported on chitosan (CS)-functionalized activated carbon nanotubes was prepared, and it exhibited a better catalytic activity. The improvement is attributed to the good dispersion status of metal particles and the further increase of metallic Pd due to the presence of CS.  相似文献   

15.
The steam reforming of glycerol over supported nickel catalysts is a promising and cost-effective method for producing hydrogen. The activity of nickel catalysts supported on γ-Al2O3 is low, primarily due to the formation of inactive nickel species during high temperature calcination in air. In order to address this problem, a Ni/γ-Al2O3 catalyst was prepared by calcination at 700 °C in a nitrous oxide (N2O) environment. The N2O calcined catalyst showed an enhanced activity for the steam reforming of glycerol. A variety of characterization techniques (XRD, TPR, XPS and H2 Chemisorption) confirmed that the high temperature N2O calcination resulted in a significant decrease in the levels of nickel aluminate. The N2O calcination also led to an enhancement in the amount of NiO as well as nickel ions present on the surface of the catalyst. Interestingly, compared to an air calcined catalyst, the N2O calcined catalyst contained larger nickel particles after reduction but the N2O calcined catalyst had a much larger nickel surface area and dispersion, which resulted in higher glycerol conversion and hydrogen yield.  相似文献   

16.
This study investigated the effect of Nd2O3 and Gd2O3 as catalyst on hydrogen desorption behavior of NaAlH4. Pressure-content-temperature (PCT) equipment measurement proved that both two oxides enhanced the dehydrogenation kinetics distinctly and increasing Nd2O3 and Gd2O3 from 0.5 mol% to 5 mol% caused a similar effect trend that the dehydrogenation amount and average dehydrogenation rate increased firstly and then decreased under the same conditions. 1 mol% Gd2O3–NaAlH4 presented the largest hydrogen desorption amount of 5.94 wt% while 1 mol% Nd2O3–NaAlH4 exerted the fastest dehydrogenation rate. Scanning Electron microscopy (SEM) analysis revealed that Gd2O3–NaAlH4 samples displayed uniform surface morphology that was bulky, uneven and flocculent. The difference of Nd2O3–NaAlH4 was that with the increasing of Nd2O3 content, the particles turned more and more big. Compared to dehydrogenation behavior, this phenomenon demonstrated that small particles structure were beneficial to hydrogen desorption. Besides, the further study found that different catalysts and addition amounts had different effects on the microstructure of NaAlH4.  相似文献   

17.
Ni/γ-Al2O3 catalyst was prepared by direct treatment of Ni(NO3)2/γ-Al2O3 precursor with dielectric barrier discharge (DBD) hydrogen plasma at different input powers, characterized by XRD, H2-TPR, CO2-TPD, N2 adsorption and TEM, respectively, and used as the catalyst for CO2 reforming of methane (CRM). The results showed that the input power obviously affected the reduction degree and catalytic performances of catalysts. Low input power under 40 W mainly resulted in the decomposition of nickel nitrate into Ni oxides. The reduction degree, catalytic activity and stability increase with the input power. Similar catalytic performances in CRM reaction can be obtained when the power exceeds 80 W. Compared with the Ni/Al2O3 catalyst prepared by traditional method, Ni/γ-Al2O3 samples prepared by H2 DBD plasma exhibit better activities, stability and anti-carbon deposit performances. It is mainly ascribed to smaller Ni particle size, more basic sites and weaker basicity. The increase of Ni particle sizes due to the sintering at high temperature results in the decrease of catalytic activities and coke formation.  相似文献   

18.
Mesoporous Bi2O3/TiO2−xNx nanocomposites (BiNT) were synthesized by soft chemical template free homogeneous co-precipitation technique. XRD, XPS, TEM, UV-Vis DRS and photoluminescence studies were adapted to determine the structural, electronic and optical properties. The photocatalytic activities of the catalysts were evaluated for water splitting to generate clean hydrogen fuel under visible light irradiation (λ ≥ 400 nm). BiNT-400 catalyst showed highest results towards hydrogen production (198.4 μmol/h) with an apparent quantum efficiency of 4.3%. The pronounced activity of BiNT-400 sample towards hydrogen production was well consistent with high crystallinity, large surface area, proper excitation by N doping and Bi2O3 sensitization.  相似文献   

19.
Morphological, optical and photocatalytic properties of TiO2, Fe2O3 and TiO2–Fe2O3 samples (formed by 1, 3 and 5 coatings) were studied. The layers were deposited on glass substrate by the sol–gel method. The catalytic activity of the samples was studied by the photodecomposition of methylene blue (MB) under visible light illumination. The FTIR results indicate that all samples present surface OH radicals that are bound either to the Ti or Fe atoms. This effect is better visualized at larger number of coatings in the TiO2–Fe2O3/glass systems. Also, two mechanisms are observed during the photodecomposition of the MB.  相似文献   

20.
CO2 reforming with simultaneous steam reforming or partial oxidation of methane to syngas over NdCoO3 perovskite-type mixed metal oxide catalyst (prereduced by H2) at different process conditions has been investigated. In the simultaneous CO2 and steam reforming, the conversion of methane and H2O and also the H2/CO product ratio are strongly influenced by the CO2/H2O feed-ratio. In the simultaneous CO2 reforming and partial oxidation of methane, the conversion of methane and CO2, H2 selectivity and the net heat of reaction are strongly influenced by the process parameters (viz. temperature, space velocity and relative concentration of O2 in the feed). In both cases, no carbon deposition on the catalyst was observed. The reduced NdCoO3 perovskite-type mixed-oxide catalyst (Co dispersed on Nd2O3) is a highly promising catalyst for carbon-free CO2 reforming combined with steam reforming or partial oxidation of methane to syngas.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号