首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 35 毫秒
1.
厚煤层大采高工作面高位钻孔终孔层位合理性研究   总被引:1,自引:0,他引:1  
为了改善厚煤层大采高工作面高位钻孔的瓦斯抽采效果,以斜沟煤矿18205工作面为研究背景,采用现场试验对采空区顶板岩层裂隙的演化规律进行分析来作为高位钻孔终孔位置的确定依据。结果表明:高位钻孔的终孔层位布置在16~18 m时,顶板岩性属软弱-中硬型,受采动影响裂隙发育情况较好,同时又不受冒落带的影响,采空区瓦斯抽采效果较为显著,高位钻孔终孔层位布置在17 m时,上隅角瓦斯浓度基本维持在0.6%左右,回风流瓦斯浓度大约为0.42%。  相似文献   

2.
为降低高瓦斯坚硬顶板倾斜近距离多煤层U型通风工作面上隅角瓦斯浓度,提高瓦斯抽采效率,本文以新疆东沟煤矿低渗透性、高瓦斯煤层143综采工作面高位钻孔为研究对象,在理论上分析水压预裂对瓦斯抽采效果影响的基础上,实施了上隅角悬顶水压预裂试验,总结了工作面瓦斯变化特征与控制措施,分析顶板垮落裂隙带瓦斯运移积聚的主要区域,并根据钻孔有效长度及利用率、钻场合理间距、钻孔数量、布置层位、压茬间距和倾向、控制范围等参数的理论计算结果,结合覆岩裂隙发育规律,优化高位钻孔的布置层位、终孔位置、终孔间距和钻孔数等抽采工艺参数。现场实践表明:抽采工艺参数优化后,钻场位置在回风巷底板高度的基础上提高1 m左右、终孔高度控制在15~25 m、终孔距回风顺槽1~41 m、终孔间距为8 m且钻孔数为6时,高位钻孔抽采效率和能力显著提高,上隅角瓦斯浓度降低至0.1%~0.3%范围内,治理效果较好。  相似文献   

3.
为降低高瓦斯坚硬顶板倾斜近距离多煤层U型通风工作面上隅角瓦斯浓度,提高瓦斯抽采效率,本文以新疆东沟煤矿低渗透性、高瓦斯煤层143综采工作面高位钻孔为研究对象,在理论上分析水压预裂对瓦斯抽采效果影响的基础上,实施了上隅角悬顶水压预裂试验,总结了工作面瓦斯变化特征与控制措施,分析顶板垮落裂隙带瓦斯运移积聚的主要区域,并根据钻孔有效长度及利用率、钻场合理间距、钻孔数量、布置层位、压茬间距和倾向、控制范围等参数的理论计算结果,结合覆岩裂隙发育规律,优化高位钻孔的布置层位、终孔位置、终孔间距和钻孔数等抽采工艺参数。现场实践表明:抽采工艺参数优化后,钻场位置在回风巷底板高度的基础上提高1m左右、终孔高度控制在15~25m、终孔距回风顺槽为1~41m、终孔间距为8m且钻孔数为6时,高位钻孔抽采效率和能力显著提高,上隅角瓦斯浓度降低至0.1%~0.3%范围内,治理效果较好。  相似文献   

4.
采空区遗煤和围岩释放的大量高浓度瓦斯聚集在"竖三带"中的裂隙带中,随着老顶来压,大量瓦斯瞬时涌出,形成上隅角瓦斯超限的隐患。通过理论计算,12204工作面采空区裂隙带总体高度为19.8~32.8 m。设计施工了8个终孔位置位于不同高度的高位钻孔,随着终孔高度由16 m升高到28 m钻孔,抽采浓度逐渐升高至40.6%,抽采纯量逐渐升高至121.8 m3/d;钻孔终孔高度由28 m升高到37 m,钻孔时抽采浓度和日抽采纯量逐渐降低。为了提高高位钻孔的抽采效果,高位钻孔的终孔高度应该设计在25~31 m。  相似文献   

5.
王迪 《现代矿业》2022,(3):244-247
为有效解决孟津煤矿11010工作面回采过程中,采空区以及上隅角的瓦斯积聚问题,根据工作面的实际情况,在采煤工作面回风顺槽布置顶板走向高位钻孔对采空区瓦斯进行治理.通过具体试验并对比抽采浓度情况,确定孟津煤矿11010工作面裂隙带高度应在27~35 m,最终认定将钻孔终孔点布置在距煤层顶板25和35 m处时的瓦斯抽采效果...  相似文献   

6.
高位裂隙带钻孔是解决工作面上隅角瓦斯超限的常用方法,高位钻孔抽放最主要的影响因素是合理层位选择,其钻孔参数应根据采空区冒落带高度来设计。以霍尔辛赫煤矿3210综采工作面为试验对象,通过理论分析、数值模拟和现场考察等手段,分析确定采空区冒落带高度,依据冒落带高度设计高位裂隙带钻孔终孔层位,优化采空区抽采工艺,提高瓦斯抽采效果,有效解决工作面上隅角瓦斯超限问题。  相似文献   

7.
为了确定凤凰山矿15#煤层覆岩裂隙发育高度,从而为高位钻孔的层位布置提供依据,利用高位钻孔和高位钻场抽放上隅角瓦斯,可有效防止上隅角瓦斯超限。利用理论计算和现场窥视仪探测相结合的方法,最终确定15#煤层裂隙发育高度。"三带"高度的确定,为高位钻孔和高位钻场的层位布置提供可靠的依据,从而利用高位钻孔和高位钻场抽采上隅角瓦斯,工作面上隅角瓦斯体积分数大幅降低,保障了工作面的高效安全生产。  相似文献   

8.
武沛武  朱亚飞 《煤炭技术》2020,39(8):152-155
走向高位裂隙钻孔是矿井上隅角瓦斯治理的一种有效方法。在分析走向高位裂隙钻孔抽采机理的基础上,以陈四楼煤矿21016工作面为例进行了走向高位裂隙钻孔抽采试验,对比分析并确定了试验区域终孔距顶板高度、距巷帮深度、钻场间距等最佳参数。试验表明,走向高位裂隙钻孔抽采能够高效治理回采工作面上隅角瓦斯,实现快速回采。  相似文献   

9.
为探索灰岩顶板条件下的瓦斯赋存状态及抽采方案,开展了灰岩的X射线衍射实验,研究了灰岩的物理化学特性,分析了灰岩对顶板瓦斯赋存和瓦斯抽采的影响。以山西沁源常信煤矿90107工作面为工程背景,先用经验公式理论计算顶板“两带”高度,再结合3DEC数值模拟软件分析回采过程中顶板破坏形态及裂隙发育特征,根据顶板裂隙发育优势区设计高位定向钻孔瓦斯抽采方案,最后通过现场实测验证。研究表明:随着工作面的推进,顶板初次垮落步距为40 m,周期垮落步距为40 m,垮落带高度为11.4 m,裂隙带发育高度为50 m,裂隙发育优势区为11.4~25.0 m;现场实测发现上隅角和工作面瓦斯超限问题得到有效解决。抽采后,上隅角瓦斯浓度始终保持在0.8%以下,上隅角瓦斯浓度降幅最大可达87.5%。研究结果为相似灰岩地质条件下瓦斯高效抽采提供了参考依据。  相似文献   

10.
为解决福城煤矿1905S工作面上隅角瓦斯超限问题,通过分源预测法进行工作面瓦斯涌出量预测,采用高位裂隙钻孔抽采、高抽巷抽采与上隅角插管抽采相结合的方法来进行瓦斯治理。结果表明:高位钻孔最佳抽采位置为距离煤层顶板上方15~30 m,终孔位置内错工作面回风巷20~30 m;工作面上隅角瓦斯浓度日平均值降到0.3%~0.45%,工作面回风流瓦斯浓度降到0.08%~0.28%。  相似文献   

11.
郑文贤 《中国矿业》2021,30(9):145-149
为解决回采工作面上隅角瓦斯超限问题,提出大直径钻孔"以孔代巷"上隅角瓦斯抽采技术,应用数值模拟方法,对大直径钻孔参数进行了优化,确定了最优孔径、孔距和终孔位置。大直径钻孔"以孔代巷"上隅角瓦斯抽采技术在西曲矿18401工作面现场应用效果表明:大直径钻孔间距为5 m、孔径为350mm及钻孔终孔位置至顶板距离为0.3m时,上隅角瓦斯浓度降至最低,抽采效果最佳;与施工高抽巷抽采进行瓦斯抽采相比,大直径钻孔"以孔代巷"上隅角瓦斯抽采技术施工难度低速度快,成本降低85.79%;工作面回采过程中,上隅角瓦斯浓度均保持在0.2%以下,有效解决了采煤工作面上隅角瓦斯易于集聚的难题,保障了工作面的安全生产。  相似文献   

12.
谭良泽 《江西煤炭科技》2021,(1):140-142,146
针对潞宁煤业公司22116工作面瓦斯浓度高的问题,本文根据潞宁煤业公司22116工作面开采技术条件及瓦斯赋存特征,提出通过建立可靠的通风系统,并采用顺层长钻孔预抽本煤层瓦斯及横川密闭埋管+顶板走向钻孔+上隅角插管抽采采空区瓦斯的综合治理措施来降低22116工作面瓦斯浓度。现场应用结果表明:工作面及采空区瓦斯抽采系统抽采量占总瓦斯涌出量的60%以上,上隅角瓦斯稳定在0.1%~0.4%之间,抽采效果良好,能有效将工作面瓦斯浓度控制在合理范围内。  相似文献   

13.
针对复合关键层工作面开采后覆岩裂隙演化及瓦斯运移涌出耦合规律,以王家岭煤矿12313综放工作面为工程背景,通过研究工作面推进后覆岩活动、裂隙演化情况,得到工作面覆岩裂隙分布特征,建立数值模型,分析卸压瓦斯运移规律。最终将研究结果应用于12313综放工作面现场瓦斯治理及效果检验。结果表明:12313综放工作面复合关键层初次破断步距为49.84m,走向模型的垮落带和裂隙带组成的“两带”高度为121.1m,切眼侧和工作面一侧的裂隙区宽度分别为45.6m和44.6m,切眼和工作面的垮落角分别为62°和60°,倾向模型的垮落带和裂隙带组成的“两带”高度为115m,运输巷一侧和回风巷一侧的裂隙区宽度分别为37m和40m,运输巷和回风巷的垮落角分别为62°和63°;12313综放工作面施加“高位定向钻孔+回风巷埋管”抽采措施后,回采过程中上隅角最大瓦斯浓度能够保持在安全范围内,当埋管口深度为17.3m时,上隅角瓦斯浓度达到0.478%,有效解决了上隅角瓦斯超限及积聚问题,可为类似条件下采煤工作面瓦斯治理提供参考。  相似文献   

14.
 为了防止常村矿2103工作面上隅角瓦斯超限,基于“O”形圈理论以及采空区上覆岩层裂隙发育规律,提出在其顶板布置高抽巷抽采采空区瓦斯。采用理论计算与数值模拟相结合的方法分析预测采空区上覆岩层裂隙发展规律,确定了主要裂隙发育带范围为22.9~36.6m;并通过现场测试单孔瓦斯抽采量与工作面的推进关系得到裂隙发育带范围为23.3~38.9m,验证了理论计算与数值模拟结果的正确性。为防止高抽巷被破坏,选取距离冒落拱的安全保险高度为1.5倍采高,将高抽巷层位设计为31.5~36.6m。  相似文献   

15.
高瓦斯矿井易自燃煤层,工作面受上隅角瓦斯超限与采空区遗煤自燃双重威胁。为解决高抽巷抽采瓦斯导致采空区氧化带面积变大、增大遗煤自燃危险性的问题,以顶板长钻孔替代高抽巷,配合进风巷侧注氮,通过对长钻孔参数与注氮参数的优化,进行防火与控瓦斯耦合治理的研究。以中兴煤业1401工作面实测数据结合ANSYS数值模拟,研究了长钻孔数量、位置对工作面上隅角瓦斯的影响规律,获得以5个直径300mm、距回风巷10m、距煤层底板15m的顶板长钻孔替代高抽巷的最优方案。在此基础上,为保障对采空区遗煤自燃的有效控制,研究了注氮量与注氮位置对采空区氧化带分布的影响规律,获得在进风巷侧氧化带与散热带分界位置注入5.5m3/min的氮气,将采空区氧化带宽度降至25m的优选结果。通过对上隅角瓦斯与采空区遗煤自燃的综合控制,保证了工作面的安全生产。  相似文献   

16.
侯文光 《现代矿业》2020,36(9):199-201
针对高瓦斯矿井“U”型通风工作面上隅角瓦斯浓度高、管理难度大的问题,在李雅庄煤矿开展了本煤层抽采优化分析和裂隙带抽采研究。通过改进本煤层钻孔的封孔深度、联孔工艺、管路联接方式等,钻孔抽采浓度由抽采4个月后降低到9%,提高到抽采10个月后维持在19%;通过调整裂隙带钻孔布置方式、优化钻孔布孔层位、采取下筛管护孔等技术,裂隙带钻场最高瓦斯抽采纯流量达13.6 m3/min,平均瓦斯抽采纯流量达8 m3/min,2个钻场综合抽采瓦斯纯流量在13 m3/min以上;工作面取消了高抽巷和高位钻场裂隙带瓦斯抽采,上隅角和回风流平均瓦斯浓度分别控制在0.5%和0.4%以下。  相似文献   

17.
为防止被保护层中瓦斯大量涌向保护层工作面,造成其工作面上隅角和回风巷瓦斯超限,基于采空区上覆岩层"三带"中瓦斯运移规律,利用高位钻孔抽放被保护层卸压瓦斯。通过在羊东矿8458工作面应用实践,采用理论计算与数值模拟确定裂隙发育带的高度,并对高位钻孔参数进行优化设计,结果表明:该工作面单孔纯瓦斯抽采量由0.5m3/min提高到0.8m3/min,回风巷瓦斯浓度由0.9%降低到0.4%,上隅角瓦斯浓度由1.2%降低到0.6%,提高了瓦斯抽放率,保证了工作面安全回采。  相似文献   

18.
根据象山矿井5#煤层煤系地层赋存条件,分析了采空区瓦斯富集区层位,设计施工5个顶板高位定向长钻孔进行采空区瓦斯抽采治理。现场抽采结果表明:顶板高位定向长钻孔布置层位高度20~22m,水平内错距离0~45m较为合理;通过进行5#煤层顶板定向长钻孔抽采技术应用,工作面日产量大幅提升,而工作面上隅角瓦斯浓度由此前长期维持在0.7%降至0.4%左右,有效遏制了上隅角瓦斯超限事故,实现了取消高位裂隙钻孔和采空区埋管抽采的目标。  相似文献   

19.
秦金辉 《中州煤炭》2020,(12):55-59
针对李雅庄煤矿U型通风工作面上隅角及回风流瓦斯浓度高、瓦斯治理难度大的问题,根据工作面瓦斯来源及在采空区三带的运移储存规律,李雅庄煤矿开展了本煤层抽采工艺优化和裂隙带抽采技术研究。对本煤层钻孔封孔深度、联孔工艺、管路连接方式等进行优化,钻孔抽采浓度由抽采4个月后降低到9%提高到抽采10个月后维持在19%;通过调整裂隙带钻孔布置方式、优化钻孔布孔层位、采取下筛管护孔等技术措施,裂隙带钻场最高瓦斯抽采纯流量达13.6 m3/min,平均瓦斯抽采纯流量达8 m3/min,2个钻场联合抽采瓦斯纯流量在13 m3/min以上;取消了瓦斯措施巷、井下移动泵和上隅角风帘,上隅角和回风流平均瓦斯浓度分别控制在0.5%和0.4%以下,对高瓦斯矿井U型通风工作面瓦斯治理有借鉴意义。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号