首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
以布尔台煤矿上下煤层叠加采动影响下保留巷道严重变形破坏为工程背景,采用理论分析、现场监测、实验室试验、数值模拟和工业性试验等综合研究方法,从巷道围岩塑性区形成和发展的角度,对巷道围岩破坏特征、采动应力时空演化规律、保留巷道塑性区恶性扩展破坏机理、应力调控围岩控制技术方面进行系统研究。结果表明:上下煤层叠加采动后,保留巷道处于高应力比值带,主应力比值为1.84~2.22,最大主应力与竖直方向夹角为39.7°~41.9°,导致巷道围岩塑性区恶性扩展,顶板破坏深度7.5 m,底板破坏深度4.5 m,煤柱帮破坏深度3 m,煤壁帮破坏深度2.25 m。基于塑性区破坏机理提出应力调控技术,通过改变煤柱尺寸或上下工作面开采布局等手段调控围岩应力,减小围岩塑性破坏范围,并进行工业性试验,取得良好的应用效果。  相似文献   

2.
为了研究上煤层采空区对其下伏近距离特厚煤层的影响,确定下煤层巷道布置内错距离;以国投塔山煤矿为背景,基于有限差分数值方法,运用双屈服本构模型实时修正手段,模拟了上煤层采空区垮落带岩体压实特性,阐明了采空区下伏煤岩层内应力场传递规律及塑性破坏发育范围;结合理论分析及现场钻孔窥视结果,验证了数值结果的可靠性,确定了下煤层回采巷道布置内错距离。结果表明:上煤层采空区内遗留区段煤柱下方应力场在下煤层中形成近似"正梯形"影响范围,上下影响宽度分别为32、56 m;遗留区段煤柱下方塑性区在下煤层中呈"倒梯形"分布,上下塑性区宽度分别为81.36、61.47 m;结合理论分析及现场钻孔窥视结果,最终确定下煤层回采巷道内错距离应为13.5 m。  相似文献   

3.
利用现场实测法对错距为20 m的上下煤层工作面进行矿压观测分析,通过观测数据可知,上煤层因为采高小、顶板坚硬,在工作面回采时没有明显的初次来压和周期来压,在回采工作面前方20 m范围内为超前影响剧烈区,工作面巷道围岩塑性区深度为1.5~2.5 m;下煤层工作面初次来压和平均周期来压步距分别为27.4 m和15.5 m,回采工作面前方30 m范围内为超前剧烈影响区,工作面巷道围岩塑性区深度2 m。  相似文献   

4.
针对布尔台煤矿22205工作面辅运巷600~1 850m出现顶板剧烈下沉现象,通过现场监测、数值模拟、理论分析等手段研究了巷道顶板围岩破坏特征及发生机理,研究表明:剧烈下沉段顶板普遍淋水,围岩破坏深度可达5m以上,顶板含水导致围岩强度软化,在侧方采空区高偏应力场作用下塑性区急剧扩展,并呈非对称性分布,导致塑性区与直接顶之上的夹煤层塑性区贯通,夹煤层塑性区释放膨胀压力作用于直接顶,进一步加剧了顶板的不稳定性。基于此提出巷道分段补强支护参数以及二次采动超前支护措施,保证了22205工作面回采期间巷道的安全使用。  相似文献   

5.
针对近距离煤层开采下部煤层回采巷道矿压显现剧烈这一难题,根据某矿10303综放工作面地质和开采条件,结合综放回采巷道现场矿压观测结果,采用FLAC3D数值计算分析回采巷道应力场分布以及塑性破坏场情况,研究表明,在上位煤层残留煤柱影响和本煤层工作面采动引起的应力重新分布耦合作用下,回采巷道顶底板及两帮移近量高达1 947、2 086 mm,巷道变形破坏严重,矿压显现剧烈。提出把巷道布置在采空区下方应力降低区内,减少本煤层区段煤柱宽度以及加强巷道支护可保证下煤层巷道稳定。  相似文献   

6.
以界沟煤矿8220工作面机巷为研究对象,针对7220工作面回采造成8220机巷顶板不稳定的情况,运用极限平衡理论和弹性力学理论对煤柱一侧塑性区宽度和上位煤层底板应力分布规律进行研究。结果表明,7#煤煤柱一侧塑性区宽度x0为21.1 m,上位煤层开采后,原岩应力平衡状态被打破,在煤壁附近区域出现了应力集中区和卸压区。底板最大破坏深度hmax为15.91m,由塑性区宽度得出煤层底板最大破坏深度与煤壁的水平距离为7.41 m,采空区底板破坏区沿水平方向的最大距离为84.3 m。根据7#煤层采空区左侧煤壁与8#煤层回采巷道顶板中心线的相对位置不同,提出4套布置方案,通过综合分析,当煤壁与回采巷道顶板中心线距离为22 m时,回采巷道受力较小且均匀,塑性区分布不大,围岩变形量也很小,为最佳布置方案。  相似文献   

7.
西铭矿南六采区8~#、9~#煤层距离近,9~#煤层开采时易受上部8~#煤层开采的影响,增加了巷道布置以及支护难度。采用理论分析、计算以及数值模拟的方法分析了影响下部煤层回采巷道布置的因素有上部煤层的保护煤柱以及上部煤层开采后底板的破坏情况。为避开上部8~#煤层残留煤柱的影响,由理论计算可得8~#与9~#煤层回采巷道的内错距离不小于8 m;通过数值模拟可得当内错距离大于10 m时,残留煤柱对下部煤层的影响最小。现场观测围岩变形验证了研究结果的正确。  相似文献   

8.
为确定某煤矿3和4号近距离煤层同采时下煤层回采巷道布置方式,结合煤层地质条件,采用理论分析确定下煤层巷道采用外错式布置方式,运用FLAC3D数值模拟软件确定下煤层回采巷道的合理外错距离为20 m,通过现场对4号煤层3409工作面材料巷顶底板及两帮变形进行观测分析,巷道在距工作面60 m以内顶板最大位移为150 mm,两帮最大位移为120 mm,超前工作面60 m以外,巷道变形量趋于稳定,结果表明,2层煤同时开采,工作面巷道外错20 m,在加固条件及合理的锚杆锚网支护作用下,巷道稳定性良好,巷道围岩变形得到了有效控制,能够满足工作面正常推进的要求。  相似文献   

9.
工作面回采巷道的布置方式对巷道矿压现象、变形特性及稳定性影响显著,尤其是在受分叉煤层上分层开采的影响下,下分层工作面回采巷道布置方式变为亟需解决的技术难题。采用数值模拟的方法研究了分叉煤层下分层回采巷道的合理布置方式,分析了5种回采巷道布置的应力分布、围岩变形特征。研究表明:上分层采动引起的煤岩体应力重新分布呈现非均匀分布,上部巷道所受应力集中程度明显大于下部巷道;随着下分层回采巷道由外向内布置,巷道受应力集中影响与变形破坏程度先增大后减小,由外错8m到内错8m,巷道应力集中系数减小82.3%,顶、底板移近量减小90.4%,塑性区发育高度减小74.7%,合理的下分层回采巷道应布置于内错8m与内错16m之间。现场实测证实,回采巷道布置于内错11m时,巷道顶、底板移近量144mm,两帮移近量249mm,可满足工作面安全生产的要求。  相似文献   

10.
为合理确定大地精煤矿近距离煤层同采工作面错距及巷道布置方式,采用滑移线场理论分析上部煤回采后对下部底板的破坏特征,结合煤层地质条件,得出上煤层开采后对底板的最大破坏深度为9.35 m;在稳压区和减压区2种错距理论下,得出同采煤层错距范围,经过对比近距离煤层夹层厚度和下煤顶板完整程度等因素,确定采用减压区布置,最小错距为16.75~29.85 m;通过数值模拟分析,得出重叠式巷道布置下上区段煤柱和下煤层巷道应力场叠加,确定5-2煤回采巷道内错式布置,内错距为6 m。理论数值计算辅之数值模拟分析确定该矿同采面合理错距和巷道布置方式,指导实际生产。  相似文献   

11.
吴中明 《煤》2012,21(6):4-7
基于FLAC3D数值模拟方法,对某矿上位3号煤层开采时对底板(下位4号煤层顶板)的影响进行了数值模拟计算,并进一步对下位4号煤层回采巷道的不同位置进行了模拟分析,最终确定了回采巷道的布置方式及合理错距.研究结果表明:3号煤层的开采严重破坏了两煤层之间岩层的完整性,并对4号煤层回采巷道的布置产生较大影响,综合考虑应力分布特征、顶板下沉位移量、破坏区分布及支护方式,最终确定巷道采用外错式布置,巷道的外错距离为16~20 m较为合适,经现场实践检验,能够满足现场支护要求,取得了较好的支护效果.研究结果对于我国极近距离煤层开采具有重要的参考价值.  相似文献   

12.
以界沟煤矿8_220工作面机巷为研究对象,针对7_220工作面回采造成8_220机巷顶板不稳定的情况,运用极限平衡理论和弹性力学理论对煤柱一侧塑性区宽度和上位煤层底板应力分布规律进行研究。结果表明,7~#煤煤柱一侧塑性区宽度x_0为21.1 m,上位煤层开采后,原岩应力平衡状态被打破,在煤壁附近区域出现了应力集中区和卸压区。底板最大破坏深度h_(max)为15.91m,由塑性区宽度得出煤层底板最大破坏深度与煤壁的水平距离为7.41 m,采空区底板破坏区沿水平方向的最大距离为84.3 m。根据7~#煤层采空区左侧煤壁与8~#煤层回采巷道顶板中心线的相对位置不同,提出4套布置方案,通过综合分析,当煤壁与回采巷道顶板中心线距离为22 m时,回采巷道受力较小且均匀,塑性区分布不大,围岩变形量也很小,为最佳布置方案。  相似文献   

13.
为探究巨厚砾岩下回采巷道冲击破坏机理,以千秋煤矿21141工作面(半孤岛面)运输巷为工程背景,首先采用数值模拟手段分析正常工作面和半孤岛面主应力场特征和回采巷道围岩区域主应力场特征,以及顶板破断产生的扰动作用对巷道围岩塑性区的影响。结果显示半孤岛开采引起的最大主应力较大,巷道围岩塑性区呈蝶形分布且在煤层中出现急剧扩展。然后分析巷道围岩蝶形塑性区急剧扩展的力学机制,得出巷道RPP曲线,阐述巷道冲击破坏的敏感因素,并揭示巨厚砾岩下回采巷道冲击破坏机理:处于半孤岛面中部的回采巷道在受到顶板破断产生的扰动作用后,巷道围岩区域主应力场突然发生改变,导致围岩蝶形塑性区急剧扩展,并以声响、震动和煤岩体抛出的形式释放存储于体内和围岩系统中的大量弹性能,出现爆炸式破坏的动力现象。  相似文献   

14.
分析了华苑煤业有限公司9、10号近距离煤层同采时下煤层回采巷道的围岩变形量,通过数值模拟、现场实测等方法,确定了其回采巷道外错上煤层回采巷道12m布置,超前下煤层工作面煤壁30m对巷道加强支护,可以保证回采过程中巷道的稳定性。  相似文献   

15.
极近距离煤层群开采,上下两层煤区段煤柱留设宽度问题,一直是百良旭升煤矿安全生产所关注的焦点之一。基于理论计算得出,上煤层区段煤柱的最小宽度为11.88m,下煤层回采巷道的内错最小距离为2.33m。同时借助于UDEC数值模拟软件,分析上煤层在不同区段煤柱宽度条件下的区段煤柱的应力分布、塑性区分布规律,得出上煤层区段煤柱的最小宽度为12m;上煤层采空区残留的区段煤柱宽度为12m时,下煤层回采巷道在采用内错式布置时,下煤层回采巷道内错距离为3m。综合分析以上结果表明:上煤层合理区段煤柱留设为12m,下煤层区段煤柱宽度为18m比较合理。研究结果为缓解该矿的采掘关系紧张、提高煤炭资源回采率、回采巷道围岩的稳定性提供了理论支持。  相似文献   

16.
软弱顶板条件下,巷道在原岩应力与采动应力叠加作用下会出现深度较大的塑性破坏区,引发剧烈的巷道围岩变形,甚至出现冒顶隐患。为掌握采动过程中塑性区在软弱顶板中的演化规律,以敏东一矿回采巷道为工程背景,系统研究了采动前后巷道围岩塑性区分布与演化特征,结果表明:在本工作面超前支承压力和上区段工作面采空区侧向支承压力的叠加影响下,采动巷道周边两个主应力比值急剧升高,同时,受邻近工作面覆岩移动影响,巷道围岩周边应力中的最大主应力方向也将发生大幅度的偏转。伴随着软弱顶板采动巷道围岩主应力大小和方向的不断演化,最大塑性破裂深度逐渐扩展且朝向顶板,塑性区扩展过程中会出现隔层分布现象,顶板剧烈变形主要是由塑性破坏产生,各层位顶板的破裂顺序依次为浅部塑性破坏、高位软岩塑性破坏和中位岩层的破裂。中部层位的断裂破坏一般滞后于高位穿透塑性区的形成。期间巷道围岩出现严重的非均匀性大变形,支护难度极大。据此提出了以注浆锚索为核心的顶板控制方法,注浆层位应主要集中在采动期间发生高位穿透塑性破坏的层位,注浆覆盖范围应不小于高位穿透塑性破坏的分布范围,巷道顶板变形监测结果表明,顶板控制效果良好,顶板未出现安全隐患且变形量在允许范围内。  相似文献   

17.
焦彪  贾金兑 《煤炭工程》2009,52(7):117-121
为了掌握深埋坚硬特厚煤层冲击地压作用下的巷道围岩变形规律,为深部矿井深化冲击地压防治提供依据,采用理论分析、FLAC3D数值模拟及现场试验等综合手段,研究了胡家河煤矿回采期间受冲击地压影响的402102工作面回风巷围岩冲击变形破坏机制及破坏规律。研究结果表明:深部条件下回采扰动达到一定程度后,巷道围岩变形会急剧增长,距离工作面越近,变形变化趋势越大,顶板围岩受超前支护影响变形趋于平缓,最大围岩位移量达180mm|在距离工作面前方45~55m范围内,巷道围岩受采动影响剧烈,围岩变形明显,主要表现为顶板及煤柱侧围岩变形,且顶板围岩塑性区破坏深度达3m以上。  相似文献   

18.
澄合百良旭升煤矿开采的两层煤间距很近,下煤层开采巷道布置受上煤层开采影响大。应用FLAC 3D数值软件模拟分析了极近距离煤层群下煤层工作面巷道采用内错、重叠和外错布置形式时巷道的塑性破坏、顶板垂直应力和下沉位移特征。根据模拟结果分析,采用内错布置方式时巷道的破坏范围、巷道顶板应力变化和变形量均相对较小。通过进一步的数值模拟研究,巷道的塑性破坏大小、顶板垂直应力值和下沉位移量在内错8 m内变化不大,而随着内错距离的增大,塑性破坏范围和垂直应力值等也逐渐增大。结合压力传递影响角理论,经计算应力集中在下煤层中的影响范围为4 m。得出了下煤层开采巷道合理布置应采取内错的方式,具体位置参数为内错4~8 m。  相似文献   

19.
极近距离煤层联合开采矿压显现规律研究   总被引:2,自引:0,他引:2  
为得到极近距离煤层不同采煤工艺下联合开采工作面矿压显现规律,采用现场实测法对错距为20 m的上下煤层工作面进行矿压观测,通过观测得出上煤层因为采高小、顶板坚硬,造成工作面没有明显的初次来压和周期来压,超前影响剧烈范围为工作面前方20 m,工作面巷道围岩塑性区深度为1.5~2.0 m;下煤层工作面初次来压和平均周期来压步距分别为27.4和15.5 m,超前剧烈影响范围为工作面前方30 m,工作面巷道围岩塑性区深度2 m,在这种条件下,20 m锚距是不合理的。  相似文献   

20.
针对苏村煤矿6煤、10煤分层同采错距不合理,上下两工作面开采受动压的相互影响,造成工作面冒顶、片帮、支架折损等问题,通过采用理论分析、数值模拟以及工程应用相结合的方法对邻近煤层同采工作面巷道布设位置及错距进行了优化研究。研究结果表明:考虑不同开采方式下10煤层巷道围岩应力变化特征,确定上下煤层巷道采用对齐式布置;考虑下煤层开采时覆岩移动,下煤层区段煤柱应大于16.7 m;上下煤层同采时工作面合理错距在45 m左右。研究结果应用工程实践表明,同采期间工作面支架受力平稳,实现了邻近煤层安全高效同采,对类似条件下的煤层群开采具有重要的指导意义。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号