首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 921 毫秒
1.
The rapid growth of wireless network technology such as HSDPA and WiMAX, has lead to greater demand for access to Internet via mobile hosts. Supporting mobile connection with fast and smooth roaming across heterogeneous wireless technologies has been an important challenge over past years. In this paper, a novel multilayer scheme for QoS-aware intra-domain mobility management is proposed. The mobility support capability is embedded in key components for the domain access network, namely, the Paging Access Routers and the Mobility-support Anchor Servers (MASs). The MASs are organized in three layers; starting from the top layer Superior-MASs, Middle-MASs and Inferior-MASs, respectively. The proposed scheme identified mobility support functionality, includes intra-domain anchor specification, route optimization algorithm, intra/inter-anchor mobility support, paging and authentication management. Simulation results of the proposed scheme show fair performance especially in the presence of QoS sensitive services.  相似文献   

2.
This paper presents a network architecture for supporting edge mobility, and goes on to consider IP networks in which the core topology is fixed but where the hosts at the edge of the network may be mobile, as is the case in cellular networks. Within this architecture, mobile enhanced routeing (MER) protocols are used to support the prefix-routed requirements of the fixed Internet, along with the movement of IP addresses allocated to mobile nodes. Specific components for the support of such edge mobility (EMA:MER) are then outlined; these offer fixed/mobile IP network convergence, homogeneous IP handoff across heterogeneous access technologies, and inter-domain roaming across heterogeneous large-scale IP domains.  相似文献   

3.
The 4G or Beyond 3G wireless networks is consist of IP-based heterogeneous access networks from 3G cellular, WiFi, WiMAX to other emerging access technologies such as mesh networks. The key objective of designing the next generation wireless networks is to support of mobile subscribers. To support the mobile host in the hybrid wireless access technologies, many solutions based on network protocol stack have been proposed in the literature. In this article, after review of mobility concepts, a special attention is given to some of the mobility management methods as well as handover techniques across various wireless access networks. We have also compared the major mobility protocols in each layer for their features. Finally, some of the open issues that needed to be addressed in mobility management protocol in the next generation wireless networks are outlined.  相似文献   

4.
It is commonly held that next generation mobile systems will be developed on the Internet in combination with diverse access technologies, as the future network architecture will be the coming together of various overlapping wireless access networks. Integrating various wireless networks in future heterogeneous networking environments poses many difficulties, the most critical challenge of which is efficient support for seamless mobility. SIP is a promising nominee for managing mobility in heterogeneous networks as it provides mobility within the application layer and the characteristics of the lower layer protocols are invisible to it. However, the performance of SIP-based mobility management is downgraded, resulting from its adoption of TCP/UDP for signaling and its strict separation between the lower layers and the application layer of the protocol stack. In this paper, a SIP-based cross-layer design for fast handoffs is proposed to shorten the service interruption time when a mobile node crosses the overlapped area of a WLAN/3G cellular system. As will be shown by the simulation results, the SIP-based solution proposed in this paper effectively lessens the handoff delays caused by either the horizontal handoff or vertical handoff in future all-IP heterogeneous wireless networks.  相似文献   

5.
In Mobile IP, the signaling traffic overhead will be too high since the new Care-of-Address (CoA) of the mobile node (MN) is registered all the way with the home agent (HA) whenever the MN has moved into a new foreign network. To complement Mobile IP in better handling local movement, several IP micro protocols have been proposed. These protocols introduce a hierarchical mobility management scheme, which divides the mobility into micro mobility and macro mobility according to whether the host's movement is intra-domain or inter-domain. Thus, the requirements on performance and flexibility are achieved, especially for frequently moving hosts. This paper introduces a routing protocol for multicast source mobility on the basis of the hierarchical mobile management scheme, which provides a unified global architecture for both uni- and multicast routing in mobile networks. The implementation of multicast services adopts an improved SSM (Source Specific Multicast) model, which combines the advantages of the existing protocols in scalability and mobility transparency. Simulation results show that the proposed protocol has better performance than the existing routing protocols for SSM source mobility.  相似文献   

6.
Mobile users expect a network service, in which seamless handoff occurs while moving on a next generation wireless network. In addition, in smart factories (SFs), communication is required between factory floor and manufacturing zone, as well as connectivity towards office IT, or remote production facilities that are connected via wide area network or internet. For this purpose, interworking between heterogeneous networks is important, but there has been little research on global mobility support. Therefore, this paper proposes Proxy‐LMA technology, a mobile IP‐based global internetworking system, to improve global mobility and interoperability in the SFs network environment. The purpose of the proposed Proxy‐LMA system is to support global mobility by using mobility management protocols such as PMIPv6 and MIPv6 in heterogeneous network environment. As a result of the performance evaluation, Proxy‐LMA system is more efficient than other methods in terms of signaling cost and response delay in heterogeneous network environment. Software‐based networking in SFs enables them to easily adapt the communication network to changing requirements. Similar to cloud‐based systems, such SFs could be seen as production clusters that could be rented and configured as needed. The SF network uses software‐defined networking combined with network functions virtualization, to achieve the required flexibility. Despite the fact that the technology is nowadays not yet ready for deployment in today's manufacturing networks, a novel network architecture for SFs based on software‐defined networking and network virtualization is here proposed, to support smart services, especially for Industrie 4.0.  相似文献   

7.
This paper considers the support of real-time services to mobile users in an Integrated Services Packet Network. In the currently existing architectures, the service guarantees provided to the mobile hosts are mobility dependent, i.e., mobile hosts experience wide variation in the quality of service and often service disruption when hosts move from one location to another. The network performance degrades significantly when mobile hosts are provided with mobility independent service guarantees. In this paper we have proposed a service model for mobile hosts that can support adaptive applications which can withstand service degradation and disruption, as well as applications which require mobility independent service guarantees. We describe an admission control scheme for implementing this service model and evaluate its performance by simulation experiments. Simulation results show that, if sufficient degree of multiplexing of the mobility dependent and independent services are allowed, the network does not suffer any significant performance degradation and in particular our admission control scheme achieves high utilization of network resources.  相似文献   

8.
We have designed the heterogeneity inclusion and mobility adaptation through locator ID separation (HIMALIS) architecture to support mobility natively in the New Generation Network. This paper proposes a new distributed mobility scheme in the HIMALIS architecture for supporting seamless mobility for the host moving across access networks of different network-layer protocols. The proposed scheme also supports mobility of an access network. It includes a signaling procedure to redirect downstream traffic from the previous gateway (or previous access router) to the new gateway (or new access router) to minimize the service disruption or packet losses during a handover. The performance results obtained from a testbed implementation in Linux validate the effectiveness of the proposal. The results demonstrate that it can achieve seamless (no packet loss) handovers if overlapped wireless access networks are available.  相似文献   

9.
提出一种基于MIP和HIP的移动管理方案,能很好地支持下一代一体化网络中异质网络接入的移动性,从而为解决数字电视的移动接收和有效管理提供了一种实用方案.  相似文献   

10.
In order to perform precise evaluation of MANET applications in the real world, realistic mobility models are needed in wireless network simulation. In this paper, we propose a new method to create urban pedestrian flows (UPF) mobility scenarios, which reproduce the walking behavior of pedestrians in urban areas. From given densities of pedestrians observed at several points, our method derives a UPF mobility scenario that reproduces the walking behavior of pedestrians consistent with the observed densities, using linear programming techniques. We have developed a network simulator MobiREAL to design and evaluate MANET protocols and applications with this realistic mobility model. MobiREAL provides various functions and tools including a mobility model to describe the behavior of individual nodes, a GUI to assist with automatic generation of UPF mobility scenarios and a visualization tool. We have conducted some experiments using the MobiREAL simulator. Through the experiments, we have investigated the influence of node mobility on the performance of MANET protocols and have shown the usefulness of our method and the MobiREAL simulator.  相似文献   

11.
Next generation wireless networks (NGWN) will be an integration of heterogeneous wireless access networks that will interwork over an IP‐based infrastructure. This all‐IP vision has led to the development of handover mechanisms to support seamless mobility for active network services among the different interworking wireless networks in order to ensure network access ubiquity in NGWN. These handover mechanisms need to ensure that mobile devices continue to receive ongoing communication without any noticeable disruption during handover events among the heterogeneous networks. This paper gives a qualitative and quantitative review of current handover approaches of IP mobility management protocols for NGWN with an objective to introduce a new way of further optimizing the handover performance. In particular, the paper focuses on handover approaches of mobile IPv6 (MIPv6) based mobility management protocols. Thus, the need, benefits, and limitations of these handover approaches are explored. Thereafter, dynamic handover coordination is introduced as a new viable solution that exploits the benefits and mitigates the limitations of these handover approaches hence improving handover performance in terms of handover delay, packet loss, and signaling overhead. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

12.
Network-layer mobility protocols have been developed to keep continuous connectivity for mobile hosts while transparent to the higher layers. However, Due to its distinct characteristics of different from traditional TCP/IP environment, mobility poses substantial impacts on TCP performance in mobile environments. This paper proposes a new cross-layer approach, by introducing a mobility detection element in the network layer which interacts with the transport layer to optimize TCP operations. As changes are only made to the endpoints, this approach preserves the end-to-end semantics of TCP. Different from most exiting works, which utilize either transport or network layer alone without much cross-layer cooperation, our approach allows the use of mobility information in TCP. We analytically compare this approach against existing approaches and show that our approach outperforms prior approaches in terms of effective data resumption time. Through performance simulations, our approach demonstrates that it can effectively improve TCP performance in Mobile IPv6-based mobile environments.  相似文献   

13.
This paper aims to suggest a host-based localized mobility management scheme which provides similar user experiences and seamless mobility of real time communications. The proposed scheme supports multiple care-of addresses and fast handover mechanism with a single unitary virtual interface among heterogeneous radio access technologies without network changes. We verify that the proposed scheme has significant vertical handover performance gains to support real time communication traffics through the experiment over the real network experimental environment consists of WiFi and 3GPP2 networks.  相似文献   

14.
下一代移动网络提供一种方法支持移动用户在异构的接入网络之间漫游。我们需要在不同的移动管理域之间建立信任关系。在这篇文章中,提出了基于公钥密钥交换协议的互域网移动性的新的安全最优化路由协议。移动节点之间的信息交换将比通常的方法少。  相似文献   

15.
移动IP与SIP集成应用中优化的AAA过程   总被引:5,自引:0,他引:5  
在移动IP和SIP分别实现网络层和应用层移动性管理的多层多协议移动性管理方案中,当两种协议独立进行AAA操作时,存在缺乏效率的问题。为解决该问题,提出优化方案——“移动IP与SIP集成应用中优化的AAA过程”(OAPIMS)。在新一代AAA协议Diameter环境下,通过移动注册时,对两种协议的操作信令进行优化,减少了信令交互次数,达到提高效率的目的。分析表明,该方法可以明显降低信令开销,减少时延,提高系统性能。  相似文献   

16.
Efficient mobility management for vertical handoff between WWAN and WLAN   总被引:15,自引:0,他引:15  
As we move toward next-generation all-IP wireless networks, we are facing the integration of heterogeneous networks, such as WWAN and WLAN, where vertical handoff is required. In vertical handoff between WWAN and WLAN, mobile hosts should be able to move freely across different networks while satisfying QoS requirements for a variety of applications. In order to achieve seamless handoff and maintain continuity of connection, we propose a novel mobility. management system that integrates a connection manager to detect network condition changes in a timely and accurate manner, and a virtual connectivity manager that uses an end-to-end principle to maintain a connection without additional network infrastructure support. A prototype system was built to test the effectiveness of the proposed system. Experiments show that seamless roaming between WLAN and WWAN can be achieved, and much better performance can be obtained than with the traditional scheme.  相似文献   

17.
The purpose of this paper is to construct bandwidth-satisfied multicast trees for QoS applications in large-scale ad-hoc networks (MANETs). Recent routing protocols and multicast protocols in large-scale MANETs adopt two-tier infrastructures to avoid the inefficiency of the flooding. Hosts with a maximal number of neighbors are often chosen as backbone hosts (BHs) to forward packets. Most likely, these BHs will be traffic concentrations/bottlenecks of the network. In addition, since host mobility is not taken into consideration in BH selection, these two-tier schemes will suffer from more lost packets if highly mobile hosts are selected as BHs. In this paper, a new multicast protocol is proposed for partitioning large-scale MANET into two-tier infrastructures. In the proposed two-tier multicast protocol, hosts with fewer hops and longer remaining connection time to the other hosts will be selected as BHs. The objective is not only to obtain short and stable multicast routes, but also to construct a stable two-tier infrastructure with fewer lost packets. Further, previous MANET quality-of-service (QoS) routing/multicasting protocols determined bandwidth-satisfied routes for QoS applications. Some are implemented as a probing scheme, but the scheme is inefficient due to high overhead and slow response. On the contrary, the others are implemented by taking advantage of routing and link information to reduce the inefficiency. However, the latter scheme suffers from two bandwidth-violation problems. In this paper, a novel algorithm is proposed to avoid the two problems, and it is integrated with the proposed two-tier multicast protocol to construct bandwidth-satisfied multicast trees for QoS applications in large-scale MANETs. The proposed algorithm aims to achieve better network performance by minimizing the number of forwarders in a tree.  相似文献   

18.
On designing issues of the next generation mobile network   总被引:2,自引:0,他引:2  
Next generation mobile network (NGMN) is envisaged to support seamless mobility across disparate access technologies in a transparent manner. The success of NGMN design will depend on its ability to address key design issues, mainly architectural adaptation and modification of service continuity functions (i.e., mobility and resource management) that arise from such interoperability. The solutions presented in this article attempt to resolve these issues by considering an IP-based interworking framework that promotes evolution of individual networks and integration of new technologies  相似文献   

19.
Metropolitan area and long-haul networks are migrating toward the deployment of optical mesh technologies. This requires, among other things, a new generation of highly intelligent protection and restoration mechanisms to perform functions of protection and bandwidth management. We introduce an architecture that provides differentiated protection services across multiple layers of network hierarchy. A connection at any client layer can request a protection against resource failures at any lower layer. A key aspect of the architecture is the hierarchical tree organization of shared risk link group (SRLG) resources. They represent routing-related failures across all layers of protocol stack. The architecture is very scalable in terms of communicating link-state and bandwidth information between adjacent layers. SRLG trees are used to aggregate this information and provide a summary to the client layer. We discuss the requirements and challenges for routing and signaling mechanisms in order to support the proposed architecture. The complexity of this architecture is evaluated and compared with the complexity of a nonhierarchical alternative.  相似文献   

20.
Over the last decade, we have witnessed a growing interest in the design and deployment of various network architectures and protocols aimed at supporting mobile users as they move across different types of networks. One of the goals of these emerging network solutions is to provide uninterrupted, seamless connectivity to mobile users giving them the ability to access information anywhere, anytime. Handoff management, an important component of mobility management, is crucial in enabling such seamless mobility across heterogeneous network infrastructures. In this work, we investigate the handoff performance of three of the most widely used mobility protocols namely, Mobile IP, Session Initiation Protocol (SIP), and Stream Control Transmission Protocol (SCTP). Our empirical handoff tests were executed on an actual heterogeneous network testbed consisting of wired, wireless local area, and cellular networks using performance metrics such as handoff delay and handoff signaling time. Our empirical results reveal that Mobile IP yields the highest handoff delay among the three mobility protocols. In addition, we also found that SIP and SCTP yield 33 and 55% lower handoff delays respectively compared to Mobile IP.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号