首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Dried blood spot (DBS) samples on filter paper are surging in popularity as a sampling and storage vehicle for a wide range of clinical and pharmaceutical applications. For example, a DBS sample is collected from every baby born in the province of Ontario, Canada, for quantification of approximately one hundred analytes that are used to screen for 28 conditions, including succinylacetone (SA), a marker for hepatorenal tyrosinemia. Unfortunately, the conventional methods used to evaluate DBS samples for newborn screening and other applications are tedious and slow, with limited options for automated analysis. In response to this challenge, we have developed a method to couple digital microfluidics (DMF) to nanoelectrospray ionization mass spectrometry (nESI-MS) for SA quantification in DBS samples. The new system is formed by sandwiching a pulled glass capillary emitter between the two DMF substrates such that the capillary emitter is immobilized without external seals or gaskets. Moreover, we introduce a new feedback control system that enables high-fidelity droplet manipulation across DBS samples without manual intervention. The system was validated by application to on-chip extraction, derivatization, and analysis of SA and other analytes from DBS samples, with comparable performance to gold-standard methods. We propose that the new methods described here can potentially contribute to a new generation of analytical techniques for quantifying analytes in DBS samples for a wide range of applications.  相似文献   

2.
Kong ST  Lin HS  Ching J  Ho PC 《Analytical chemistry》2011,83(11):4314-4318
We propose using dried blood spots (DBS) as sample matrix for gas chromatography/mass spectrometry (GC/MS) based metabolomic profiling for the benefits of higher sample stability, more convenient sample acquisition with DBS, higher analyte separation power, and more readily biomarker identification with GC/MS. To establish this proposition, the metabolomic profiles generated from DBS were compared with that obtained from the conventional whole blood and plasma matrixes and also with dried plasma spots (DPS) as another covariate control. Our findings indicated that whole blood produced the most number of detectable markers (866), whereas DPS yielded the least number (614). DBS and plasma matrix, on the other hand, produced the most similar numbers of detectable (695 vs 749) and identifiable markers (137 vs 147, matching with Fiehn library). From the analysis of the DBS and plasma metabolomic profiles, it was concluded that when l-lysine 2, iminodiacetic acid 2, dl-threo-beta-hydroxyaspartic acid, citric acid, or adenosine-5-monophosphate 2 are not involved as markers, DBS could be a suitable substitute for plasma for metabolomic profiling.  相似文献   

3.
Unstable drug candidates often lead to complexity for both sample collection and bioanalysis. Dried blood spot (DBS) technology is believed to be a viable solution to address this problem. However, it is currently a challenge to evaluate compound stability on DBS due to its solid format. The observed compound loss on a DBS card could be degradation and/or incomplete recovery. Therefore, a reliable bioanalytical method which can differentiate recovery loss from degradation is necessary for such stability evaluation. In this paper, the stability of an unstable drug candidate (KAI-9803) in human blood was evaluated using DBS. A reliable approach to evaluating analyte stability on DBS was developed with an appropriate time-zero sample, a consistent DBS sample processing method, and a suitable positive control. Commercially available DBS cards were evaluated, and it was found that KAI-9803 degraded during the drying process. An in-house modified DBS card was developed and demonstrated to be able to stabilize KAI-9803 during the drying process by rapidly lowering the pH of the spotted blood sample. The storage stability of KAI-9803 in human blood on this new card has been established for at least 48 days at room temperature. This in-house modified DBS card could provide a generic approach for other compounds which require stabilization at a low pH.  相似文献   

4.
A novel approach for on-line introduction of internal standard (IS) for quantitative analysis using LC-MS/MS has been developed. In this approach, analyte and IS are introduced into the sample injection loop in different steps. Analyte is introduced into the injection loop using a conventional autosampler (injector) needle pickup from a sample vial. IS is introduced into the sample injection loop on-line from a microreservoir containing the IS solution using the autosampler. As a result, both analyte and IS are contained in the sample loop prior to the injection into the column. Methodology allowed to reliably introduce IS and demonstrated injection accuracy and precision comparable to those obtained using off-line IS introduction (i.e., IS and analyte are premixed before injection) while maintaining chromatographic parameters (i.e., analyte and IS elution time and peak width). This new technique was applied for direct analysis of model compounds in rat plasma using on-line solid-phase extraction (SPE) LC-MS/MS quantification. In combination with on-line SPE, IS serves as a surrogate IS and compensates for signal variations attributed to sample preparation and instrumentation factors including signal suppression. The assays yielded accuracy (85-119%), precision (2-16%), and analyte recovery comparable to those obtained using off-line IS introduction. Furthermore, on-line IS introduction allows for nonvolumetric sample (plasma) collection and direct analysis without the need of measuring and aliquoting a fixed sample volume prior to the on-line SPE LC-MS/MS analysis. Therefore, this methodology enables direct sample (plasma) analysis without any sample manipulation and preparation.  相似文献   

5.
Serum N-glycan profiles for use as clinical biomarkers of disease(s) is of increasing scientific interest. Promising profiles have already been identified in several diseases, including cancer, Alzheimer's, and diabetes. Venipuncture is routinely performed to collect the blood necessary for this type of analysis, but blood from a fingerstick placed on filter paper (known as dried blood spots (DBS)) is more advantageous. This sampling method is less invasive than "classical" blood drawing, can be performed conveniently at home, and avoids cumbersome shipping and storage procedures. Here, we present a procedure for N-glycan profiling of DBS samples consisting of reconstitution of DBS in N-glycan release buffer, protein denaturation, enzymatic N-glycan release and PGC Solid phase extraction (SPE) for purification. Samples are then analyzed using nanoHPLC-PGC-chip-TOF-MS to generate N-glycan profiles. Using this method, ~150 N-glycan structures can be monitored, originating from 44 N-glycan compositions that can be analyzed with good repeatability (the coefficient of variation (%CV) is ~20%). To assess the stability of the N-glycans during storage, DBS samples were stored at room temperature (RT) and -80 °C. No major differences in N-glycan composition could be observed. Moreover, upon comparison of the N-glycan profile of DBS with profiles obtained from serum, which is a classical matrix for N-glycan profiling, similar patterns were observed. The method facilitates large population studies for N-glycan profiling, and is especially advantageous for children and the elderly, who have limited blood supplies, as well as animal studies in small mammals.  相似文献   

6.
Although dried spot micro X-ray fluorescence (MXRF) is an effective analytical technique for trace elemental analysis, the sample preparation procedures currently used suffer from a number of drawbacks. These drawbacks include relatively long preparation times, lack of control of the sample preparation environment, and possibility of loss of volatile analytes during the drying process. Microwave-assisted drying offers several advantages for dried spot preparation, including control of the environment and minimized volatility because of the differences between microwave heating and conventional heating. A microwave-assisted drying technique has been evaluated for use in preparing dried spots for trace analysis. Two apparatus designs for microwave drying were constructed and tested using multielement standard solutions, a standard reference material, and a "real-world" semiconductor cleaning solution. Following microwave-assisted drying of these aqueous samples, the residues were redissolved and analyzed by ICPMS. Effective recovery was obtained using the microwave drying methods, demonstrating that the microwave drying apparatus and methods described here may be more efficient alternatives for dried spot sample preparation.  相似文献   

7.
Paper spray is a newly developed ambient ionization method that has been applied for direct qualitative and quantitative analysis of biological samples. The properties of the paper substrate and spray solution have a significant impact on the release of chemical compounds from complex sample matrices, the diffusion of the analytes through the substrate, and the formation of ions for mass spectrometry analysis. In this study, a commercially available silica-coated paper was explored in an attempt to improve the analysis of therapeutic drugs in dried blood spots (DBS). The dichloromethane/isopropanol solvent has been identified as an optimal spray solvent for the analysis. The comparison was made with paper spray using chromatography paper as substrate with methanol/water as solvent for the analysis of verapamil, citalopram, amitriptyline, lidocaine, and sunitinib in dried blood spots. It has been demonstrated that the efficiency of recovery of the analytes was notably improved with the silica coated paper and the limit of quantitation (LOQ) for the drug analysis was 0.1 ng mL(-1) using a commercial triple quadrupole mass spectrometer. The use of silica paper substrate also resulted in a sensitivity improvement of 5-50-fold in comparison with chromatography papers, including the Whatman ET31 paper used for blood cards. Analysis using a hand-held miniature mass spectrometer Mini 11 gave LOQs of 10-20 ng mL(-1) for the tested drugs, which is sufficient to cover the therapeutic ranges of these drugs.  相似文献   

8.
Hemoglobinopathies are the most common inherited disorders. Newborn blood screening for clinically significant hemoglobin variants, including sickle (HbS), HbC, and HbD, has been adopted in many countries as it is widely acknowledged that early detection improves the outcome. We present a method for determination of Hb variants by direct surface sampling of dried blood spots by use of an Advion Triversa Nanomate automated electrospray system coupled to a high-resolution mass spectrometer. The method involves no sample preparation. It is possible to unambiguously identify homozygous and heterozygous HbS, HbC, and HbD variants in <10 min without the need for additional confirmation. The method allows for repeated analysis of a single blood spot over a prolonged time period and is tolerant of blood spot storage conditions.  相似文献   

9.
We report a new assay of N-acetylgalactosamine-4-sulfatase (aryl sulfatase B) activity in dried blood spots (DBS) for the early detection of mucopolysaccharidosis VI (Maroteaux-Lamy syndrome) in newborn screening. The assay uses a synthetic substrate consisting of N-acetylgalactosamine-4-sulfate moiety glycosidically linked to a hydrophobic residue and furnished with a tert-butyloxycarbamido group as a marker for specific mass spectrometric fragmentation. Incubation with aryl sulfatase B present in DBS converts the substrate to a desulfated product which is detected by electrospray tandem mass spectrometry and quantified using a homologous internal standard. Assay and workup procedures were optimized to be compatible with the work flow in newborn screening laboratories. Analysis of DBS from human newborns showed clear distinction of aryl sulfatase B activity from 89 healthy individuals where it ranged between 1.4 and 16.9 μmol/(h L of blood), with an average activity of 7.4 μmol/(h L of blood), and an MPS-VI patient that had an activity of 0.12 μmol/(h L of blood). Results are also reported for the aryl sulfatase B assay in DBS from groups of normal felines and felines affected with MPS-VI.  相似文献   

10.
Shrivas K  Wu HF 《Analytical chemistry》2008,80(7):2583-2589
A new approach of using modified silver nanoparticles (AgNPs) in toluene as hydrophobic affinity probes for the separation and preconcentration of peptides and proteins in biological samples prior to atmospheric pressure-matrix assisted laser desorption/ionization (AP-MALDI) ion trap mass spectrometry and matrix assisted laser desorption/ionization-time-of-flight (MALDI-TOF) mass spectrometry has been successfully demonstrated. To our best knowledge, for the first time, the modified AgNPs with hydrophobic ligands, such as dodecanethiol (DT) and octadecanethiol (OT) in toluene, were used for the liquid-liquid microextraction (LLME) of peptides and proteins through the hydrophobic interactions. In the present investigation, gramicidin was chosen as a model compound to assess the hydrophobic extraction with the modified AgNPs. The optimum extraction efficiency of gramicidine was observed at pH 7.0 for 1.5 h of extraction time with 7% addition of salt. Compared to the conventional use of AP-MALDI-MS, a 266-388-fold improvement in the limit of detection (LOD) for gramicidin was obtained in urine and plasma samples. The lowest concentration of gramicidin that was detected by using modified AgNPs in urine and plasma samples was 0.13 and 0.16 microM, respectively. Furthermore, the proposed method was demonstrated for the extraction of other long chain proteins, like myoglobin, ubiquitin, and bovine serum albumin, in a sample solution by matrix assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF MS). The major feature of the newly synthesized modified AgNPs was that the target species could be efficiently separated and preconcentrated without sample loss prior to MALDI-MS detection for the sensitive and effective analysis of peptides and proteins in biological samples.  相似文献   

11.
A novel method for the in vitro detection of the protozoan Plasmodium, the causative agent of malaria, has been developed. It comprises a protocol for cleanup of whole blood samples, followed by direct ultraviolet laser desorption (LD) time-of-flight mass spectrometry. Intense ion signals are observed from intact ferriprotoporphyrin IX (heme), sequestered by malaria parasites during their growth in human red blood cells. The LD mass spectrum of the heme is structure-specific, and the signal intensities are correlated with the sample parasitemia (number of parasites per unit volume of blood). Parasitemia levels on the order of 10 parasites/microL blood can be unambiguously detected by this method. Consideration of laser beam parameters (spot size, rastering across the sample surface) and actual sample consumption suggests that the detection limits can be further improved by at least an order of magnitude. The influence of experimental factors, such as desorbed ion polarity, laser exposure and fluence, sample size, and parasite growth stage, on the threshold for parasite detection is also addressed.  相似文献   

12.
The automation of solid-phase microextraction (SPME) coupled to liquid chromatography-tandem mass spectrometry (LC-MS/MS) was accomplished using a 96 multiwell plate format, a SPME multifiber device, two orbital shakers, and a three-arm robotic system. Extensive optimization of the proposed setup was performed including coating selection, optimization of the fiber coating procedure, confirmation of uniform agitation in all wells, and the selection of the optimal calibration method. The system allows the use of pre-equilibrium extraction times with no deterioration in method precision due to reproducible timing of extraction and desorption steps and reproducible positioning of all fibers within the wells. The applicability of the system for the extraction of several common drugs is demonstrated. The optimized multifiber SPME-LC-MS/MS was subsequently fully validated for the high-throughput analysis of diazepam, lorazepam, nordiazepam, and oxazepam in human whole blood. The proposed method allowed the automated sample preparation of 96 samples in 100 min, which represents the highest throughput of any SPME technique to date, while achieving excellent accuracy (87-113%), precision (相似文献   

13.
We have developed a tandem mass spectrometry based assay of iduronate-2-sulfatase (IdS) activity for the neonatal detection of mucopolysaccharidosis II (MPS-II, Hunter Syndrome). The assay uses a newly designed synthetic substrate (IdS-S) consisting of α-L-iduronate-2-sulfate, which is glycosidically conjugated to a coumarin and a linker containing a tert-butyloxycarbamido group. A short synthesis of the substrate has been developed that has the potential of being scaled to multigram quantities. Sulfate hydrolysis of IdS-S by IdS found within a 3 mm dried blood spot specifically produces a nonsulfated product (IdS-P) which is detected by electrospray tandem mass spectrometry and quantified using a deuterium-labeled internal standard, both carried out in positive ion mode. Analysis of DBS from 75 random human newborns showed IdS activities in the range of 4.8-16.2 (mean 9.1) μmol/(h L of blood), which were clearly distinguished from the activities measured for 14 MPS-II patients at 0.17-0.52 (mean 0.29) μmol/(h L of blood). The assay shows low blank activity, 0.15 ± 0.03 μmol/(h L of blood). The within-assay coefficient of variation (CV) was 3.1% while the interassay CV was 15%.  相似文献   

14.
合成了N-双取代亚甲基磷酸壳聚糖,并且对其进行了表征。通过戊二醛交联的方法将N- 双取代亚甲基磷酸壳聚糖固定在壳聚糖薄膜表面。对接枝前后膜表面的结构性能和血液相容性进行表征,结果显示N -双取代亚甲基磷酸壳聚糖被有效地固定在壳聚糖膜表面,并且能够有效地抑制血小板在壳聚糖膜表面的粘附。  相似文献   

15.
A novel approach has been developed for the quantitative determination of circulating drug concentrations in clinical studies using dried plasma spots (DPS) on paper substrates, rather than conventional plasma samples. A quantitative bioanalytical high-pressure liquid chromatography-tandem mass spectrometry (HPLC-MS/MS) assay has been validated using paroxetine as a tool compound (range 0.2-200 ng/mL human plasma). The assay employed simple solvent extraction of a punched disk taken from the DPS sample, followed by reversed phase HPLC separation, combined with multiple reaction monitoring mass spectrometric detection. In addition to performing routine experiments to establish the validity of the assay to internationally accepted criteria (precision, accuracy, linearity, sensitivity, selectivity), experiments are included to assess the effect of the volume of plasma spotted and the use of an indicating paper. The validated DPS approach was successfully applied to a clinical study utilizing pooled samples and a direct comparison of DPS and plasma was made (single oral dose of 37.5 mg of paroxetine).  相似文献   

16.
Although LC-MS methods are increasingly used for the absolute quantification of proteins, the lack of appropriate internal standard (IS) hinders the development of rapid and standardized analytical methods for both in vitro and in vivo studies. Here, we have developed a novel method for the absolute quantification of a therapeutic protein, which is monoclonal antibody (mAb). The method combines liquid chromatography tandem mass spectrometry (LC-MS/MS) and protein cleavage isotope dilution mass spectrometry with the isotope-labeled mAb as IS. The latter was identical to the analyzed mAb with the exception that each threonine contains four (13)C atoms and one (15)N atom. Serum samples were spiked with IS prior to the overnight trypsin digestion and subsequent sample cleanup. Sample extracts were analyzed on a C18 ACE column (150 mm x 4.6 mm) using an LC gradient time of 11 min. Endogenous mAb concentrations were determined by calculating the peak height ratio of its signature peptide to the corresponding isotope-labeled peptide. The linear dynamic range was established between 5.00 and 1000 microg/mL mAb with accuracy and precision within +/-15% at all concentrations and below +/-20% at the LLOQ (lower limit of quantification). The overall method recovery in terms of mAb was 14%. The losses due to sample preparation (digestion and purification) were 72% from which about 32% was due to the first step of the method, the sample digestion. This huge loss during sample preparation strongly emphasizes the necessity to employ an IS right from the beginning. Our method was successfully applied to the mAb quantification in marmoset serum study samples, and the precision obtained on duplicate samples was, in most cases, below 20%. The comparison with enzyme-linked immunosorbent assay (ELISA) showed higher exposure in terms of AUC and Cmax with the LC-MS/MS method. Possible reasons for this discrepancy are discussed in this study. The results of this study indicate that our LC-MS/MS method is a simple, rapid, and precise approach for the therapeutic mAb quantification to support preclinical and clinical studies.  相似文献   

17.
We introduce the marriage of two technologies: digital microfluidics (DMF), a technique in which droplets are manipulated by application of electrostatic forces on an array of electrodes coated by an insulator, and porous polymer monoliths (PPMs), a class of materials that is popular for use for solid-phase extraction and chromatography. In this work, circular PPM discs were formed in situ by dispensing and manipulating droplets of monomer solutions to designated spots on a DMF device followed by UV-initiated polymerization. We used PPM discs formed in this manner to develop a digital microfluidic solid-phase extraction (DMF-SPE) method, in which PPM discs are activated and equilibrated, samples are loaded, PPM discs are washed, and the samples are eluted, all using microliter droplets of samples and reagents. The new method has extraction efficiency (93%) comparable to that of pipet-based ZipTips and is compatible with preparative sample extraction and recovery for on-chip desalting, removal of surfactants, and preconcentration. We anticipate that DMF-SPE may be useful for a wide range of applications requiring preparative sample cleanup and concentration.  相似文献   

18.
This report is about applying a Fisher ratio method to entire four dimensional (4D) data sets from third-order instrumentation data. The Fisher ratio method uses a novel indexing scheme to discover the unknown chemical differences among known classes of complex samples. This is the first report of a Fisher ratio analysis procedure applied to entire 4D data sets of third-order separation data, which, in this case, is comprehensive two-dimensional gas chromatography coupled with time-of-flight mass spectrometry analyses of metabolite extracts using all of the collected mass channels. Current analysis methods for third-order separation data use only user-defined subsets of the 4D data set. First, in a validation study, the Fisher ratio method was demonstrated to objectively evaluate and determine the chemical differences between three controlled urine samples that differed by known spiked chemical components. It was determined that, out of more than 600 recognizable chemical components in a single sample, the six spiked components, along with only two other matrix components, differed most significantly in concentration among the control samples. In a second study, the Fisher ratio method was used in a novel application to discover the unknown chemical differences between urine metabolite samples from pregnant women and nonpregnant women. A brief list of the top 11 components that were most significantly different in concentration between the pregnant and nonpregnant samples was generated. Because the Fisher ratio calculation statistically differentiates regions of the chromatogram with large class-to-class variations from regions containing large within-class variations, the Fisher ratio method should generally be robust against biological diversity in a sample population. Indeed, application of principal component analysis in this second study failed due to biological diversity of the samples.  相似文献   

19.
A simple, fast, and reproducible sample preparation procedure was developed for relative quantification of metabolites in adherent mammalian cells using the clonal β-cell line INS-1 as a model sample. The method was developed by evaluating the effect of different sample preparation procedures on high performance liquid chromatography- mass spectrometry quantification of 27 metabolites involved in glycolysis and the tricarboxylic acid cycle on a directed basis as well as for all detectable chromatographic features on an undirected basis. We demonstrate that a rapid water rinse step prior to quenching of metabolism reduces components that suppress electrospray ionization thereby increasing signal for 26 of 27 targeted metabolites and increasing total number of detected features from 237 to 452 with no detectable change of metabolite content. A novel quenching technique is employed which involves addition of liquid nitrogen directly to the culture dish and allows for samples to be stored at -80 °C for at least 7 d before extraction. Separation of quenching and extraction steps provides the benefit of increased experimental convenience and sample stability while maintaining metabolite content similar to techniques that employ simultaneous quenching and extraction with cold organic solvent. The extraction solvent 9:1 methanol: chloroform was found to provide superior performance over acetonitrile, ethanol, and methanol with respect to metabolite recovery and extract stability. Maximal recovery was achieved using a single rapid (~1 min) extraction step. The utility of this rapid preparation method (~5 min) was demonstrated through precise metabolite measurements (11% average relative standard deviation without internal standards) associated with step changes in glucose concentration that evoke insulin secretion in the clonal β-cell line INS-1.  相似文献   

20.
We describe a method for improving the homogeneity of MALDI samples prepared for analysis of small, single-stranded oligonucleotides using the widely used DNA matrix system, 3-hydroxypicolinic acid/picolinic acid/ ammonium citrate. This matrix system typically produces large crystals around the rim of the dried sample and requires tedious searching of this rim with the laser. However, when a substrate is prepared using both Nafion and a hydrophilic, high-molecular-weight polymer, such as linear polyacrylamide, linear poly(ethylene oxide), or methyl cellulose, oligonucleotide-doped matrix crystals tend to be smaller and more uniformly distributed across the entire spot, thus decreasing the time that is required for locating a usable signal. In addition to MALDI characterization of the spatial distribution of "sweet spots," fluorescence microscopy allows for imaging dye-labeled DNA in dried MALDI spots. The mechanism of enhanced uniformity may involve increased viscosity in the MALDI sample droplet due to partial solubilization of the substrate by the MALDI sample solvent as well as partitioning of the matrix or DNA between the solvent and the undissolved portion of the polymer substrate.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号