首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
在分析平衡重式叉车结构特性和侧翻机理的基础上,确定平衡重式叉车防侧翻控制执行机构;提出了基于可拓决策的平衡重式叉车防侧翻控制策略,设计了包括上层可拓控制与下层执行控制的防侧翻可拓分层控制器。上层可拓控制器将叉车防侧翻控制域分为经典域、可拓域及非域,并确定下层执行控制器的权重系数;下层执行控制器接收上层可拓控制器确定的权重系数,对横摆角速度控制器和侧向加速度控制器进行控制权重分配,并执行防侧翻控制指令,实现平衡重式叉车防侧翻可拓控制。欧标工况仿真与实车试验结果表明:基于可拓决策的平衡重式叉车防侧翻控制策略可有效降低叉车在高速紧急转向工况下的侧倾幅度,防止叉车侧翻,提高了平衡重式叉车的稳定性与主动安全性。  相似文献   

2.
针对传统单一控制算法无法有效协调智能汽车不同转向工况下横向控制性能要求的问题,根据智能汽车在高速和低速转向工况下呈现出的系统特性差异,设计了一种基于PID控制和模型预测控制的智能汽车路径跟踪混合控制策略。该控制策略在低速模式下采用PID控制,在高速模式下则采用模型预测控制,通过车辆速度确定路径跟踪控制模式,进而设计带稳定监督的控制模式切换机制,实现了横向控制系统的平滑切换。基于Carsim和MATLAB/Simulink仿真平台对所设计的智能汽车路径跟踪混合控制策略进行了仿真验证,在此基础上,进一步完成了实车试验。仿真和实车试验结果表明,所设计的混合控制策略能够保证智能汽车不同速度下的路径跟踪性能,具有较好的跟踪精度、实时性和车辆行驶稳定性。  相似文献   

3.
《机械工程学报》2020,56(4):115-124
针对车辆高速紧急工况下的主动避撞问题,提出一种基于工况辨识的自适应避撞控制策略。以实时交通环境信息与车辆状态信息为基础构建一种紧急工况避撞模式分类方法,该方法把紧急工况避撞模式分为制动避撞、转向避撞、协调避撞三种模式。对于制动避撞模式,设计一种考虑路面附着条件和驾乘人员舒适度的纵向制动避撞策略;对于转向操纵避撞模式,构建基于多项式路径规划的避撞策略;对于制动和转向协调避撞模式,设计一种基于数据驱动的自学习协调控制策略。不同控制策略的期望输出通过比例积分微分(Proportional integral differentiation, PID)下层控制器对期望值进行跟踪来完成避撞。在Matlab/Simulink环境中搭建Simulink-Carsim汽车紧急避撞控制联合仿真平台,基于该平台进行多种工况的虚拟试验来验证控制系统的实时性和有效性。结果表明,控制系统能自动有效识别当前紧急工况该采取何种避撞操纵,在完成避撞的同时也能保证车辆的稳定性。  相似文献   

4.
如何精确地协调发动机系统和电机系统,使得发动机和电机实际作用总和能够实时、准确地满足上层控制求得的驱动轮目标驱动力矩,是混合动力汽车牵引力控制系统(HEVTCS)驱动控制策略所需解决的问题。根据转矩动态协调制定发电机、电机协调控制策略,搭建混合动力汽车牵引力控制系统仿真实验平台,建立了发动机、电机、传动系统、制动系统及十五自由度车辆动力学模型。通过在均一沥青路面上直线行驶三种不同工况下分析,对比分析有无HEVTCS控制的汽车动力性能,对比分析发动机电机协调控制策略与传统控制策略控制结果。对比分析表明:混合动力汽车牵引力控制系统能迅速地将驱动轮轮速控制在了目标轮速;与传统内燃机汽车牵引力控制算法相比,发动机电机协调控制策略更快、更有效地实现了对打滑车轮的控制。为进一步实车实验提供模型和理论支持。  相似文献   

5.
奔腾智能混合动力电动轿车自适应巡航控制系统   总被引:7,自引:0,他引:7  
为了从整车系统控制角度综合解决车辆的安全、节能和环保问题,突破目前新能源车辆领域和智能汽车领域仍各独自开展相关技术研究的限制,提出一种融合新能源汽车和智能汽车各自先进技术的解决方案—智能混合动力电动轿车,并提出融合双模式切换自适应巡航控制、整车状态识别及转矩分配控制和驱/制动系统协调控制的整车自适应巡航分层控制体系。在上层控制中研究基于实时状态反馈的双模式切换2自由度结构模型匹配控制器,解决适应混合动力驱动系统动态特性的自适应巡航期望转矩制定的难题;在中层控制中采用了综合内燃机(Internal combustion engine,ICE)优化曲线、电动机最佳效率特性和电池最佳效率特性的基线式控制策略;在下层控制中提出发动机/驱动电动机的转矩协调控制策略和电动机制动/EVB液压制动的协调控制策略。在此基础上,通过仿真分析和实车试验对分层控制系统进行评价与验证。仿真与试验结果表明,所开发的分层式控制系统确保整车在自适应巡航状态下,不仅可以有效提高整车安全性和降低驾驶强度,而且使整车具有最佳的燃油经济性和排放性能。  相似文献   

6.
针对分布式电驱车路径跟踪问题,基于分层协调控制方法,提出了一种路径跟踪策略。由电驱车独立转向/驱动的结构优势,设计四轮阿克曼转向理论,以建立电驱车路径跟踪分层运动学模型,并应用到路径跟踪控制策略中。该策略分为上下两层控制。在上层控制中,将上层运动学模型作为模型预测控制算法的预测模型,通过设定最优目标函数和约束条件将未来控制增量的求解问题转换为二次规划的最优解问题,计算出最优转角和速度控制量。下层控制中,通过下层运动学,将上层控制得到的控制量映射到四轮的转角和速度控制量,应用模糊PID算法,实现电驱车的路径跟踪控制。在基于Carsim/Simulink的仿真平台上进行圆形路径跟踪仿真验证,结果表明,该控制器能够使分布式电驱车实现路径的准确跟踪;在实车试验中进行换道路径跟踪,简单MPC(模型预测控制算法)与分层协调控制数据结果对比表明分层协调控制方法能够有效的改善控制性能,提供路径跟踪的精确性和稳定性。  相似文献   

7.
汽车ESP与ASS分层协调控制研究   总被引:5,自引:2,他引:3  
建立整车8自由度模型和汽车电子稳定控制程序(Electronic stability program,ESP)与主动悬架系统(Active suspension system,ASS)的分层协调控制模型,对ESP应用基于状态观测器的自适应模糊控制,对ASS采用随机线性最优控制,并进行上层控制器的设计,上层控制器通过线性权函数输出下层控制器的加权值,从而实现协调控制的目的。基于Matlab/Simulink软件,在阶跃和双移线两种工况下进行仿真研究。仿真结果证明,所建立的分层协调控制模型与控制策略不仅能明显改善汽车的行驶稳定性和操纵稳定性,同时可提高车辆的乘坐舒适性。在Labview系统中建立上层协调控制器、ESP控制器和车辆模型,自行开发ASS并安装上车,结合ESP的执行机构进行硬件在环仿真。其结果与Matlab仿真结果基本一致。  相似文献   

8.
四轮轮毂电机驱动电动汽车各轮驱动力矩独立可控,可通过控制前轴左右两轮的力矩差实现前轮转向。以四轮轮毂电机驱动智能电动汽车为研究对象,针对线控转向系统执行机构失效时的轨迹跟踪和横摆稳定性协同控制问题,提出一种基于差动转向与直接横摆力矩协同的容错控制方法。该方法采用分层控制架构,上层控制器首先基于时变线性模型预测控制方法求解期望前轮转角和附加横摆力矩,然后考虑转向执行机构建模不确定性以及路面干扰,设计基于滑模变结构控制的前轮转角跟踪控制策略。下层控制器以轮胎负荷率最小化为目标,利用有效集法实现四轮转矩优化分配。最后,分别在高速换道和双移线工况下仿真验证了该控制方法的有效性和实时性。  相似文献   

9.
针对电动轮汽车全新的底盘结构策略,采用分层控制,将姿态跟踪与底盘操纵量优化分配相结合,上层姿态控制器采用精确线性化控制策略克服系统非线性,生成改善行驶姿态所需合力矩;下层分配控制器采用二次规划算法,优化因四轮独立驱动而形成的冗余执行机构,综合实现姿态参数跟踪误差和轮胎力输出最小化,优化分配驱动扭矩、制动扭矩,减少整车能耗。仿真结果表明,该控制结构可使运行轨迹很好地跟踪驾驶员给定轨迹且车辆操作稳定性及安全性均得到明显的提高。  相似文献   

10.
汽车底盘系统分层式协调控制   总被引:6,自引:1,他引:5  
将汽车底盘控制系统分成上层与下层控制部分进行分层式协调控制.下层控制器为悬架、转向和制动系统三个单独的控制器,用以执行各子系统的控制任务,实现各自的性能指标;上层协调器主要接受来自下层控制器的决策信息,对其进行整体协调分析,并及时修改下层控制的决策,从实现整车综合性能最优的目标出发来执行协调优化任务.仿真及试验结果表明,采用分层式协调控制策略对汽车底盘系统进行控制,能够很好地改善整车的平顺性、安全性及操纵稳定性,控制效果要优于采用单独的子控制器的控制效果.  相似文献   

11.
为了协调智能驾驶车辆的轨迹跟踪精确性和稳定性,提高控制算法对不同工况的自适应能力,提出基于Takagi-Sugeno模糊变权重模型预测控制(Takagi-Sugeno fuzzy model predictive control,T-S FMPC)的轨迹跟踪控制策略。以前轮转角为控制变量建立MPC控制,并以实时横向位移误差和横摆角误差为模糊输入,通过T-S模糊控制在线优化MPC目标函数权重,协调权重矩阵对轨迹跟踪精确性和稳定性的影响。基于Carsim建立分布式驱动电动汽车的整车动力学模型,基于Simulink建立控制策略,通过双移线工况仿真及实车试验,验证了所提控制策略的有效性。仿真结果表明,相比于传统MPC控制,所提出的T-S模糊变权重MPC控制可降低横向位移误差达62.24%,有效提高轨迹跟踪精度;并且可使前轮转角波动减小37.46%、横摆角误差减小84.19%,显著增强轨迹跟踪稳定性;试验结果表明,在20 km/h、沥青路面双移线工况下,横向位移误差在0.12 m以内,横摆角误差在1°以内,且前轮转角控制曲线平滑,说明所提算法具有良好的控制效果和实用性。  相似文献   

12.
在极限轮胎-路面条件下,智能汽车的横向操纵性能急剧恶化,增加了自动驾驶系统的控制难度。现有研究主要聚焦智能汽车轨迹跟踪的性能,但是难以解决低附着路面、紧急避障等极限工况下的智能汽车轨迹跟踪时的安全性和稳定性。利用模型预测控制方法实现了智能汽车的轨迹跟踪,同时保证智能汽车行驶稳定性和安全性,仿真试验同样表明该控制器具有较好的鲁棒性。结合二次型代价函数和安全约束构建了轨迹跟踪的开环最优预测控制问题,通过约束车辆的前后轮侧偏角,保持极限工况下智能汽车的行驶稳定性。研究方法与结果可为智能汽车设计提供参考。  相似文献   

13.
针对CVT混合动力汽车机电动力耦合系统,划分出工作模式区域,研究了驱动工况下的扭矩管理。为满足整车平顺性要求,结合发动机的动力性和经济性,研究了各工作模式切换过程中机电动力耦合系统控制策略以及发动机与电机之间的动力协调控制算法。进行了整车动力学建模与仿真分析,并采用台架试验进行验证。结果表明,在单电机、CVT式混合动力系统中,采用所制定的扭矩协调控制策略,能有效的降低模式切换过程中的扭矩波动,提高模式切换的品质,实现混合动力汽车各模式切换的平稳控制。  相似文献   

14.
针对车辆在轨迹跟踪过程中,尤其是高速转向等极限工况下,易出现车辆跟踪精度差和失稳的问题,以分布式驱动智能汽车为研究对象,提出一种考虑横向稳定性的轨迹跟踪协同控制策略。首先,建立车辆纵向、横向以及横摆运动的三自由度动力学模型,设计了基于模型预测控制的主动转向控制器,通过优化求解得到跟踪期望轨迹的最佳前轮转角。然后,采用滑模控制设计横摆力矩控制器,将横摆角速度和质心侧偏角作为联合变量,利用积分二自由度控制模型,计算车辆稳定的等效附加横摆力矩。最后,采用二次规划算法设计最优力矩分配控制器,以满足总的驱动力矩和附加横摆力矩的控制需求。仿真试验结果表明,控制系统在极限高速工况下,能够使车辆精确、稳定的跟踪期望轨迹。  相似文献   

15.
为进一步提高无人驾驶混合动力汽车轨迹跟踪精度和能耗经济性,提出了一种轨迹跟踪节能控制融合策略。首先,建立车辆运动学模型,采用模型预测控制策略对车辆进行轨迹跟踪控制;在此基础上,以速度为交互变量,提出了一种三阶段动态规划节能控制策略,在线优化最优经济性函数,以降低整车能耗总成本;最后,选择相互独立的纯跟踪轨迹跟踪算法与功率跟随节能控制策略进行比较。结果表明,所提出的轨迹跟踪节能控制融合策略提高了轨迹跟踪效果,降低了整车能耗总成本,轨迹跟踪精度提高了70.47%,纯电动和混合驱动模式下能耗总成本分别下降了4.52%和25.10%。  相似文献   

16.
本文拟研究基于分布式驱动的自动驾驶汽车EPS控制系统控制策略设计,包括对EPS工作模块控制的上层控制模块以及对助力电机控制并对目标助力电流跟踪的下层控制模块;通过不同控制模块的联合运用达到对汽车EPS的控制运用,从而使汽车低速行驶转向轻便灵活,高速行驶稳定可靠。  相似文献   

17.
在保证经济性的前提下,以提高驱动工况中混合动力系统的模式切换控制品质为研究目的,构建一种基于GA-ECMS电机转矩优化的协调控制策略。基于等效燃油消耗最小策略(Equivalent fuel comsumption minimization strategy,ECMS)获得混合动力系统各个模式下的优化转矩控制策略以及各个模式下的价值量,并根据各个模式下的价值量获得模式切换的边界曲线。然后在此基础上,进而引入驱动电机的转矩系数为控制变量,以电池荷电状态(State of charge,SOC)为状态量,整车的冲击度为价值量构建目标函数,采用遗传算法(Geneticalgorithm,GA)进行优化,获得基于电机转矩系数优化的协调控制策略。在Matlab/Simulink的仿真平台上建立整车仿真模型,采用NEDC和HWFET高速工况的综合工况进行仿真验证,结果表明在NEDC工况下,最大冲击度从19.45 m·s~(-3),降低至10.96 m·s~(-3),降低了43.65%;在HWFET工况下,最大冲击度10.692 m·s~(-3),降低至5.869 m·s~(-3),降低了45.11%,同时也开展模式切换瞬时冲击度和整车经济性验证。通过以D2P系统为核心的硬件在环试验进一步以福州实际行驶工况进行验证。根据试验结果说明采用所制定的基于转矩优化协调控制策略相比于无协调控制能有效地降低冲击度,提高模式切换品质,并具有良好的整车经济性。  相似文献   

18.
针对四轮独立驱动电动汽车直线行驶跑偏及行驶稳定性问题,提出驱动转矩协调控制策略。该策略采用分层控制逻辑,上层控制逻辑层负责车速跟随控制、附加横摆力矩计算、驱动防滑控制;下层控制逻辑层负责驱动转矩协调分配。基于车辆动力学软件Carsim和MATLAB/Simulink搭建四轮独立驱动电动汽车协调控制系统仿真模型,在高附着、低附着和对开路面等典型工况进行仿真,结果表明,相比于转矩平均分配及无控制,协调控制策略使车辆横摆角速度保持在0±0.05(°)/s,且车轮滑转率控制在最优滑转率范围内,提高了车辆直驶稳定性。  相似文献   

19.
采用分层协调控制策略,对汽车半主动悬架系统和防抱死制动系统进行了集成控制研究。分别设计了半主动悬架的底层控制器和防抱死制动的底层控制器及二者的上层协调控制器,底层控制器用来执行各子系统控制任务;上层协调控制器以实现整车性能最优为目标,对底层控制器进行相应的调整和修正。试验结果表明:采用分层式协调控制策略可较好地解决两系统间的矛盾,提高汽车在紧急制动过程中的稳定性和安全性,提升整车综合性能。  相似文献   

20.
新型并联式混合动力汽车模式切换协调控制   总被引:4,自引:0,他引:4  
针对一种基于行星齿轮机构的新型并联式混合动力汽车,以实现整车系统效率最优为目标,对混合动力系统工作模式区域进行划分,制定出整车能量分配策略。研究了各工作模式切换之间的扭矩协调控制算法,并进行了驱动工况仿真分析。结果表明,综合了系统效率最优的能量分配策略与协调控制算法既能优化动力系统效率,又能够有效提高混合动力汽车模式切换过程中动力传递的平稳性。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号