首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 220 毫秒
1.
形变热处理对Cu-1.0Cr合金组织及性能的影响   总被引:1,自引:0,他引:1  
对Cu-1.0Cr合金依次进行热锻、固溶、冷轧及不同温度和时间下的时效处理,测试了不同状态下合金的硬度及电导率,并进行了微观组织观察.结果表明,在380 ℃时效时,硬度和电导率均随时效时间的延长而升高;在450 ℃时效时,硬度随时效时间的延长明显下降,电导率基本不变.Cu-1.0Cr合金的最佳时效参数为450 ℃时效6 h,获得的硬度(HB)和电导率分别为127和40.08 MS/m.微观组织研究表明,形变热处理后,在Cu基体上出现弥散分布的第二相颗粒;随着时效温度的升高和时效时间的延长,合金发生再结晶,在450 ℃时效时,再结晶使合金硬度显著下降.  相似文献   

2.
研究了热处理工艺对6061铝合金硬度和电导率的影响。结果表明:固溶处理过程中,随着固溶时间的增加,合金硬度先降低后升高,后又逐渐降低,随着固溶温度的增加,显微硬度值逐渐增大;时效过程中,硬度值随时效时间增加先升高后降低,电导率随时效时间增加逐渐升高并趋于稳定;6061铝合金最佳的热处理制度为540℃固溶4 h+173℃时效11 h,此时合金的硬度值为119.74 HV6,电导率为56%·IACS;对合金电导率影响最大的参数是固溶温度和时效时间,对硬度值影响最大的参数是时效时间。  相似文献   

3.
研究了热处理对Cu-3.0Ni-0.75Si-0.3Co合金电导率、硬度和组织演变规律的影响,并探讨了合金的强化机理。结果表明,随固溶温度升高,合金的晶界和晶内的Ni3Si2和CoSi相粒子数量逐渐减少,合金的过饱和固溶度不断增大。在950℃×1h固溶后,由于第二相粒子的尺寸较小、数量很少,在扫描电镜图片中出现的第二相粒子未能在XRD图谱中发现,说明在950℃×1h固溶处理后溶质元素能较为充分溶于基体中。经950℃×1h固溶处理和60%的冷变形后,电导率随时效时间的延长而升高,之后趋于平稳。随着时效温度的升高,电导率也不断提高;硬度随时效时间的延长先升高,后降低;时效温度越高,到达峰值所需的时间越短。在950℃×1h固溶处理,经60%的冷变形,450℃×6h时效处理后,合金的综合性能较好,此时,合金硬度(HB)为257,电导率为20.18 MS/m。  相似文献   

4.
《轻金属》2014,(4)
研究Mn含量及时效温度对ZL104铝合金力学性能和断口形貌的影响。结果表明:在三种时效温度:165℃、175℃、185℃三种条件下,合金的抗拉强度和硬度都随Mn含量的增加逐渐升高,合金的伸长率随Mn含量的增加逐步下降。在165℃~175℃时效温度范围,三种Mn含量质量分数分别为(0.2%、0.4%、0.6%)合金的抗拉强度、硬度随时效温度的上升而逐渐升高,超过175℃以后又呈下降趋势。在165℃~175℃时效温度区间,伸长率随着时效温度的增加而逐渐降低;在时效温度为175℃~185℃区间时,伸长率则随着时效温度的升高逐渐增加。  相似文献   

5.
采用OM、XRD、导电率和硬度测试等分析方法研究了固溶时效工艺对Cu-4Ni-2Sn-Si合金的显微组织及性能的影响。结果表明,热轧态Cu-4Ni-2Sn-Si合金中未溶解的第二相Ni2Si颗粒随着固溶温度的升高逐渐回溶,且发生再结晶,再结晶晶粒逐渐长大。当温度升高至900℃时,第二相粒子基本回溶到合金基体中。经时效处理后,合金的硬度受到析出相与再结晶的交互作用的影响。当时效温度低于450℃时,硬度值随时效时间的延长呈现先增大后减小的趋势;而时效温度升高至500℃时,合金硬度值随时效时间的延长而逐渐下降。而导电率则随时效时间的延长一直保持增大的趋势。热轧态Cu-4Ni-2Sn-Si合金经900℃×1 h固溶处理+68%冷轧变形+450℃×6 h时效处理后获得较优的综合性能,其硬度值为225 HB,导电率为24.5%IACS。  相似文献   

6.
通过显微硬度测试、电导率测试、拉伸力学性能测试以及透射电镜观察等研究预时效温度对2519铝合金力学性能和电导率的影响.结果表明:随着预时效温度的升高,2519铝合金到达峰值时效的时间缩短,峰值硬度降低;经135 ℃预时效的合金具有较大的抗拉强度和屈服强度,其强度分别为490和442 MPa,但其伸长率仅为7.0%;经165 ℃预时效的合金具有较好的综合力学性能,其中抗拉强度、屈服强度和伸长率分别为480 MPa、435 MPa和10.5%;当预时效温度大于165 ℃时,合金电导率随预时效温度的升高而升高;当预时效温度小于 165 ℃时,合金电导率随温度的升高逐渐降低.  相似文献   

7.
采用显微硬度测试、电导率测试、拉伸力学性能测试以及透射电镜观察,研究时效温度和时效时间对2A14大规格铝合金棒材力学性能和电导率的影响规律。结果表明:在相同的时效时间下,合金电导率随时效温度升高而逐渐升高;在相同的时效温度下,合金电导率随时效时间的延长而逐渐升高。固溶态2A14合金中存在与Al6Mn晶体结构相近的Al12(MnCu)3Si2粒子,此Al12(MnCu)3Si2粒子在合金再结晶过程中影响晶界迁移,抑制晶粒在固溶过程中的长大效应;时效后,合金中主要的强化相为S'相,但在140℃(或低于400℃)时效12 h的合金中,强化相数量较少,合金性能与固溶态接近;经160℃、12 h时效后,合金具有较好的综合力学性能,其抗拉强度和屈服强度分别为509 MPa和452 MPa,伸长率为10.1%;在180℃、12 h时效条件下处理后,合金中的S'相会明显粗化,屈服强度和抗拉强度大幅下降,伸长率升高,表现出明显的过时效特征。  相似文献   

8.
用熔铸法制备了Cu-12%Fe合金,研究了经1000℃固溶后不同时效工艺对合金的相组成、显微组织、硬度及电导率的影响.结果表明,550℃时效可细化合金的Fe枝晶.消除Cu基体枝晶偏析并改变晶面间距.合金硬度在时效初期时下降,随后增加并达到最大值后再次下降.在350℃和450℃时效时,电导率随时效时间增加而上升.在550℃和650℃时效时,电导率随时效时间先增加而后下降.对Cu-12%Fe合金固溶并在550℃时效4h,可以获得良好的力学和电学性能匹配.  相似文献   

9.
采用大气熔炼工艺制备了Cu-Ni-Si合金,研究了时效前后同溶温度对集成电路引线框架用Cu-Ni-Si合金显微硬度和电导率的影响,并且分析了在800℃固溶后时效对Cu-Ni-Si合金性能的影响.结果表明:时效前随同溶温度的升高,材料的显微硬度和电导率均是首先较快下降,之后义略有回升:Cu-Ni-Si合金经800℃固溶及450℃×8h时效后,合金得到了良好综合性能,其显微硬度达到241 HV,电导率达到42.5%IACS.  相似文献   

10.
研究了不同固溶温度、时效参数和变形量对Cu-0.1Ag-0.61Cr合金性能的影响.结果表明合金显微硬度随固溶温度升高而降低,导电率反而升高.合金经980℃×20 min固溶后,在480℃时效1 h可获得较高的导电率和硬度.时效前对合金加以冷变形可以显著提高其显微硬度,合金经60%变形后在480℃时效30 min时,可获得良好的综合性能.  相似文献   

11.
对不同变形量的Cu-Ni-Si-Mg合金进行时效处理,研究了变形量、时效温度及时效时间对合金性能的影响。结果表明,时效前的预冷变形能够促进合金在时效过程中第二相的析出,从而提高合金的显微硬度和导电率。当合金经60%的冷变形,在450℃时效1 h,能获得较高的显微硬度与导电率,分别达到242 HV0.2和35.5%IACS。同时建立了该合金在450℃下,关于时效时间的相变动力学方程和导电率方程。  相似文献   

12.
研究了固溶、时效工艺对CuNiCoBe合金性能的影响,经960℃×1.5h固溶+430℃×5h时效处理,合金具有较好的综合性能,硬度可达224HV、电导率为49%IACS,按此工艺热处理后的CuNiCoBe合金的软化温度约为480℃;此外,还研究了工作温度对CuNiCoBe合金性能的影响。结果表明,随温度升高CuNiCoBe合金的电导率和强度均呈下降趋势,而电导率的下降尤为明显,但强度下降并不严重,450℃时的σ0.2、σb分别相当于室温时的88%和82.4%,电导率却只有其室温时的42%左右,在温度接近合金的软化温度时,电导率存在一个不大的上升突变现象。  相似文献   

13.
对含铒5A06铝合金进行75~450℃,1h退火处理和75、150、200、250、275、300、400、470℃的从0.5~100h退火处理,并对退火后的合金进行硬度测试、光学显微镜分析、扫描电镜分析,发现退火温度对合金组织性能影响显著,退火时间对合金影响较微小。进行不同温度1h退火时,在75℃退火,合金硬度少量下降;在125~250℃温度退火,随退火温度增加合金硬度下降趋势较缓,耐腐蚀性普遍较低;在250~275℃退火后,合金硬度大幅下降,降幅达28%,但耐腐蚀性能显著提高;275℃以上温度退火,合金硬度变化趋于稳定。进行不同时间退火时,合金在小于200℃和大于275℃时硬度随时间的变化不明显,合金在任一温度下退火0.5h即可完成主要的组织性能转变,退火100与0.5h的合金组织性能差异不大,但在200~275℃区间内,随退火时间延长合金硬度连续下降,250℃退火时合金硬度随时间的延长下降最为明显。在本实验不同退火工艺下合金硬度HV均不小于850MPa。  相似文献   

14.
结合光学显微镜(OM)、扫描电镜(SEM)以及透射电镜(TEM)等,对非等温时效处理后7055铝合金的组织、硬度、拉伸和抗腐蚀性能进行了研究。结果表明:合金的硬度和强度在60~120℃快速增加,随后缓慢上升并于160℃达到峰值,在时效后期则呈直线下降,伸长率的变化趋势与之相反。非等温时效过程中,起始温度、终止温度及升温速率会对合金的性能有一定影响。升温时效至160℃,合金不仅能够满足T6态的力学性能要求,同时能获得较好的抗腐蚀性能。   相似文献   

15.
热处理工艺对ITER级CuCrZr合金性能的影响   总被引:1,自引:0,他引:1  
研究了同溶温度、时效温度和时间对ITER级Cu-0.8Cr-0.1Zr合金强化规律的影响和不同工艺下的金相组织,分析了合金导电率随时效温度的变化规律.结果表明:Cu-0.8Cr-0.1Zr合金硬度均随同溶温度、时效温度和时间的增加而呈现出峰值.在950℃同溶、480℃时效3 h后获得最佳硬化效果,硬度值为138 HV0.2.合金经同溶处理后的相对导电率仅为34%IACS,随时效温度的升高,导电率增加,480℃时效处理3 h,导电率达最大值74%IACS.  相似文献   

16.
温度对化学镀 Ni-P 合金层形貌、硬度及耐蚀性的影响   总被引:5,自引:5,他引:0  
金永中  杨奎  曾宪光  倪涛  丁松 《表面技术》2015,44(4):23-26,31
目的揭示在70~95℃施镀温度范围,Ni-P合金镀层显微形貌的变化规律,并探讨表面形貌结构、合金硬度及耐蚀性能的相关性。方法以施镀温度为变量,通过化学沉积的方法制备Ni-P合金镀层。对镀层表面形貌进行表征,测试镀层硬度,并采用盐酸为腐蚀介质进行浸泡,以相对腐蚀速率表征镀层的耐蚀性。结果在70~95℃的施镀温度范围内,随着温度升高,镀层形貌先趋于致密和平整,而后表面粗化,镀层的硬度和耐蚀性均呈现先提高、后降低的趋势。最佳镀层形貌和硬度值出现在85℃,耐蚀性最好的施镀温度区间为85~90℃。结论当镀液p H值为4.5±0.1,施镀时间为3 h时,施镀的最佳温度为85℃。此条件下制备的镀层表面平整且均匀致密,硬度高,耐蚀性能优异。  相似文献   

17.
研究了Cu-Cr-Co合金经80%变形量冷轧和450 ℃时效后的组织和性能,并与Cr-Cr合金进行了对比。结果表明, Cu-0.66Cr-0.05Co和Cu-0.62Cr-0.22Co合金的性能在450 ℃时效4 h时达到峰值,此时的抗拉强度、硬度及导电率分别为376 MPa和410 MPa、143.7 HV0.5和138.4 HV0.5、84.1%IACS和66.2%IACS。峰时效态Cu-Cr-Co合金析出相为体心立方结构(bcc),并与基体呈Nishiyama-Wassermann取向关系,Co含量对Cu-Cr-Co合金的晶粒形貌几乎没有影响。与Cu-Cr合金相比,Co的加入使合金时效的时间延长,硬度有所增加,抗软化性能提高,但抗拉强度和导电率均下降。由于Cu和Co在422 ℃以上具有一定的固溶度,在时效过程中部分Co逐渐固溶进基体中,形成固溶体,并没有与预测一样分布在析出相外围,降低了合金综合性能。  相似文献   

18.
通过微弧氧化技术(Micro-arc oxidation, MAO)对TC4合金进行表面处理,随后采用X射线衍射仪、场发射扫描电镜、激光共聚焦显微镜、硬度测试以及电化学腐蚀等方法研究不同退火温度下MAO-TC4合金的表面氧化膜层形貌、厚度、硬度、相结构以及电化学腐蚀行为。结果表明:随着退火温度的升高,MAO-TC4合金表面氧化膜层的显微硬度亦随之增大,当退火温度为850 ℃时,其最高显微硬度为592 HV0.2。450~850 ℃退火温度范围内,随退火温度升高,MAO-TC4合金的膜层耐腐蚀性先增加后降低;当退火温度为650 ℃时,膜层的自腐蚀电流密度为0.125 μA/cm2,耐腐蚀性能最佳。  相似文献   

19.
利用真空熔炼制备了Ti-29Nb-13Ta-4.6Zr合金铸锭,对合金在800 ℃固溶处2 h后在300~500 ℃下进行等时时效,研究时效温度对合金的组织结构和摩擦磨损性能的影响。结果表明:800 ℃固溶2 h后水冷的合金是单一过冷亚稳近β组织,低温时效后,样品中出现了弥散的α相,而当时效温度超过450 ℃以上时α相不再呈弥散分布,而是在晶界处富集。随着时效温度的升高,合金的硬度逐渐增高,到500 ℃时达到最高253 HV0.3,然后快速降低;摩擦因数同样随着时效温度的增高呈现先升高后降低的规律。450 ℃时效的样品的综合性能最好,摩擦因数较小,且磨损试样出现了粘着磨损的特征。  相似文献   

20.
探究了Cu含量与时效工艺对Al-Cu-Mg-Si系合金显微组织、力学性能以及耐腐蚀性能的影响。研究表明,随Cu含量的增加,铸态铝合金中Al2Cu相数量增加、尺寸不断增大,形貌由点状转为粗网状,铸态铝合金的强度也随之提升,耐蚀性能下降。在180 ℃×(4~28) h时效区间内,整体上合金硬度先上升后下降,0.5%Cu、1.5%Cu合金在8 h时达到峰值,2.5%Cu合金在12 h时达到峰值。530 ℃固溶+180 ℃×8 h时效后,铝合金中析出Al2Cu相,随着Cu含量的增加,Al2Cu相的含量增加,硬度显著上升,2.5%Cu含量的合金抗拉强度达到最大值325.0 MPa,屈服强度达到258.8 MPa,伸长率为4.5%,其强度与传统的电力金具用铸铁相当。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号