首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Trimethylolpropane trimethacrylate (TRIM) was homopolymerized and copolymerized with methyl methacrylate (MMA), glycidyl methacrylate (GMA), and acrylamide (AA), respectively, in various solvents and at various temperatures. For comparison, poly(styrene-co-divinyl benzene) [poly(S-co-DVB)] gels were selected. The mechanical stability was measured by compression of the swollen gels. The porogen served as swelling agent. The compression moduli increased with increasing TRIM concentration in the polymerization. The compression moduli of poly(TRIM) could be increased by copolymerization with low concentrations of comonomer. Low polymerization temperature decreased the mechanical strength of poly(TRIM). A good solvent increased the compression modulus. TRIM-based gels were at least as mechanically stable as were poly(S-co-DVB) gels.  相似文献   

2.
Bisphenol A based epoxy acrylate (BABEA), a commercial UV‐curable material, was introduced as a crosslinker for the fabrication of an epoxy‐functionalized monolithic polymer array through UV‐initiated copolymerization with glycidyl methacrylate as the functional monomer and poly(ethylene glycol) 200 as the porogen. Scanning electron microscopy images showed that the monolithic poly(bisphenol A based epoxy acrylate‐co‐glycidyl methacrylate) [poly(BABEA‐co‐GMA)] exhibited a well‐controlled skeletal and well‐distributed porous structure. The α‐fetoprotein (AFP) immunoaffinity monolithic polymer array prepared by the immobilization of AFP on epoxy‐functionalized monolithic arrays was used as an immunosensor for chemiluminescent AFP detection. X‐ray photoelectron spectroscopy results indicate that the AFP antibody was successfully immobilized on the monolithic poly(BABEA‐co‐GMA) array. With a noncompetitive immune‐response format, the proposed AFP immunoaffinity array was demonstrated as a low‐cost, flexible, homogeneous, and stable array for AFP detection. © 2014 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2015 , 132, 41792.  相似文献   

3.
The gloss properties of the polycarbonate (PC)/poly(methyl methacrylate‐acrylonitrile‐butadiene‐styrene) (MABS) blend with styrene‐acrylonitrile‐co‐glycidyl methacrylate (SAN‐co‐GMA) as a compatibilizing agent were investigated. For the PC/poly(MABS)/SAN‐co‐GMA (65/15/20, wt %) blend surface, the reduction of gloss level was observed most significantly when the GMA content was 0.1 wt %, compared with the blends with 0.05 wt % GMA or without GMA content. The gloss level of the PC/poly(MABS)/SAN‐co‐GMA (0.1 wt % GMA) blend surface was observed to be 35, which showed 65% lower than the PC/poly(MABS)/SAN‐co‐GMA blend without GMA content. The gloss reduction was most probably caused by the insoluble fractions of the PC/poly(MABS)/SAN‐co‐GMA blend that were formed by the reaction between the carboxylic acid group in poly(MABS) and epoxy group in SAN‐co‐GMA. The results of optical and transmission electron microscope analysis, spectroscopy study, and rheological properties supported the formation of insoluble structure of the PC/poly(MABS)/SAN‐co‐GMA blend when the GMA content was 0.1 wt %. © 2018 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2018 , 135, 46450.  相似文献   

4.
A series of intelligent hydrogels (poly(NIPA‐co‐GMA‐Dex)) were synthesized by copolymerization of N‐isopropylacrylamide (NIPA) and glycidyl methacrylate derivatized dextran (GMA‐Dex) in aqueous solution with different ratios. Their swelling behaviors at different temperatures and in different pH and ionic strengths, and their mechanical properties were studied. It has found that poly(NIPA‐co‐GMA‐Dex) hydrogels are temperature‐, pH‐, and ionic strength‐sensitive associated with the roles of the component PNIPA and GMA‐Dex, respectively. Most significantly, poly (NIPA‐co‐GMA‐Dex) hydrogels exhibit simultaneously good swelling properties and mechanical properties. © 2005 Wiley Periodicals, Inc. J Appl Polym Sci 96: 2435–2439, 2005  相似文献   

5.
Blending polypropylene (PP) with biodegradable poly(3‐hydroxybutyrate) (PHB) can be a nice alternative to minimize the disposal problem of PP and the intrinsic brittleness that restricts PHB applications. However, to achieve acceptable engineering properties, the blend needs to be compatibilized because of the immiscibility between PP and PHB. In this work, PP/PHB blends were prepared with different types of copolymers as possible compatibilizers: poly(propylene‐g‐maleic anhydride) (PP–MAH), poly (ethylene‐co‐methyl acrylate) [P(E–MA)], poly(ethylene‐co‐glycidyl methacrylate) [P(E–GMA)], and poly(ethylene‐co‐methyl acrylate‐co‐glycidyl methacrylate) [P(E–MA–GMA)]. The effect of each copolymer on the morphology and mechanical properties of the blends was investigated. The results show that the compatibilizers efficiency decreased in this order: P(E–MA–GMA) > P(E–MA) > P(E–GMA) > PP–MAH; we explained this by taking into consideration the affinity degree of the compatibilizers with the PP matrix, the compatibilizers properties, and their ability to provide physical and/or reactive compatibilization with PHB. © 2011 Wiley Periodicals, Inc. J Appl Polym Sci, 2012  相似文献   

6.
Monodisperse poly[styrene‐co‐glycidyl methacrylate (GMA)] microparticles were synthesized by dispersion copolymerization in a water–ethanol medium. The effects of various polymerization parameters on the particle size and size distribution of the dispersion copolymerization were investigated. The dispersion of polymer particles decreased when the GMA was added if the polystyrene homopolymer particles were polydispersed. The GMA acted as a comonomer as well as a costabilizer in the dispersion copolymerization of styrene with GMA. The solvency of the monomer increased with the concentration of GMA in the polymerization medium because GMA has a greater hydrophilicity than styrene, resulting in a large particle size and a slow polymerization rate. From an HCl–dioxane analysis of the poly(styrene‐co‐GMA) microparticles, great amounts of epoxy groups were detected after the completion of dispersion copolymerization. © 2001 John Wiley & Sons, Inc. J Appl Polym Sci 80: 1206–1212, 2001  相似文献   

7.
Free‐radical melt‐grafting of the dual‐monomer systems glycidyl methacrylate–styrene (GMA‐St) and hydroxyethyl methacrylate–styrene (HEMA‐St) onto polypropylene (PP) has been studied using a single‐screw extruder. For single monomer grafting systems, degradation of PP was unavoidable and deterioration of the mechanical properties of the grafted PP subsequently occurred because of β‐scission of PP chains during the free‐radical melt‐grafting process. However, for the dual‐monomer systems, it is shown that the addition of styrene as a comonomer can significantly enhance the GMA or HEMA grafting levels on PP and reduce the extent of β‐scission of PP backbone. It has been found that the grafting degree of dual‐monomer melt‐grafted PP, such as PP‐g‐(GMA‐co‐St) or PP‐g‐(HEMA‐co‐St), is about quadruple that of single‐monomer grafted PP for the same monomer and dicumyl peroxide concentrations. Moreover, the melt flow rate of the dual‐monomer grafted PP is smaller than that of the unmodified PP. Hence, PP not only was endowed with higher polarity, but also kept its good mechanical properties. © 2000 Society of Chemical Industry  相似文献   

8.
We report a facile strategy for fabricating fluorescent quantum dot (QD)‐loaded microbeads by means of microfluidic technology. First, a functional fluorine‐containing microemulsion was synthesized with poly[(2‐(N‐ethylperfluorobutanesulfonamido)ethyl acrylate)‐co‐(methyl methacrylate)‐co‐(butyl acrylate)] (poly(FBMA‐co‐MMA‐co‐BA)) as the core and glycidyl methacrylate (GMA) as the shell via differential microemulsion polymerization. Then, CdTe QDs capped with N‐acetyl‐l ‐cysteine (NAC) were assembled into the poly(FBMA‐co‐MMA‐co‐BA‐co‐GMA) microemulsion particles through the reaction of the epoxy group on the shell of the microemulsion and the carboxyl group of the NAC ligand capped on the QDs. Finally, fluorescent microbeads were fabricated using the CdTe QD‐loaded fluorine‐containing microemulsion as the discontinuous phase and methylsilicone oil as the continuous phase by means of a simple microfluidic device. By changing flow rate of methylsilicone oil and hybrid microemulsion system, fluorescent microbeads with adjustable sizes ranging from 290 to 420 µm were achieved. The morphology and fluorescent properties of the microbeads were thoroughly investigated using optical microscopy and fluorescence microscopy. Results showed that the fluorescent microbeads exhibited uniform size distribution and excellent fluorescence performance. © 2014 Society of Chemical Industry  相似文献   

9.
Bisphenol A‐based epoxy acrylate (BABEA), a commercial ultraviolet (UV)‐curable material, was introduced as a new manufacturing material for facile fabrication of epoxy‐functionalized micro‐zone plates through UV‐initiated copolymerization using glycidyl methacrylate (GMA) as the functional monomer. The poly (BABEA‐co‐GMA) was highly transparent in visible range while highly opaque when the wavelength is less than 295 nm, and of high replication fidelity. X‐ray photoelectron spectroscope (XPS) results indicated the existence of epoxy groups on the surface of the poly (BABEA‐co‐GMA), which allowed for binding protein through an epoxy‐amino group reaction. A fabrication procedure was proposed for manufacturing BABEA based epoxy‐functionalized micro‐zone plates. The fabrication procedure was very simple; obviating the need of micromachining equipments, wet etching or imprinting techniques. To evaluate the BABEA‐based epoxy‐functionalized micro‐zone plates, α‐fetoprotein (AFP) was immobilized onto the capture zone for chemiluminescent (CL) detection in a noncompetitive immune response format. The proposed AFP immunoaffinity micro‐zone plate was demonstrated as a low cost, flexible, homogeneous, and stable assay for α‐fetoprotein (AFP). © 2013 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2014 , 131, 39787.  相似文献   

10.
The new aromatic tetrafunctional methacrylate monomer, 1,4‐di(2‐hydroxy‐3‐methacryloyloxypropoxy) phenol, and its application for the synthesis of porous microspheres have been presented. It was copolymerized with trimethylolpropane trimethacrylate in the presence of pore‐forming diluents mixture (chlorobenzene and 1‐decanol). The results indicate that composition of diluents mixture influence porous structure of copolymers. The porous structure of the copolymer obtained in the presence of 50% chlorobenzene was studied in detail. The results show that pore volume and the most probable pore size diameters determined for the copolymer in the dry and in the wetted states are different. © 2007 Wiley Periodicals, Inc. J Appl Polym Sci, 2008  相似文献   

11.
BACKGROUND: Hydrogen peroxide biosensors based on Poly(glycidyl methacrylate‐co‐3‐thienylmethylmethacrylate)/ Polypyrrole [Poly(GMA‐co‐MTM)/PPy] composite film were reported. Poly(GMA‐co‐MTM) including various amounts of GMA and MTM monomers was synthesized via the radical polymerization. Enzyme horseradish peroxidase (HRP) was trapped in Poly(GMA‐co‐MTM)/PPy composites during the electropolymerization reaction between pyrrole and thiophene groups of MTM monomer, and chemically bonded via the epoxy groups of GMA. Analytical parameters of the fabricated electrodes were calculated and are discussed in terms of film electroactivity and mass transfer conditions of the composite films. RESULTS: The amount of electroactive HRP was found to be 1.25, 0.34 and 0.213 µg for the working electrodes of Poly(GMA30%co‐MTM70%)/PPy/HRP, Poly(GMA85%co‐MTM15%)/PPy/HRP and Poly(GMA90%co‐MTM10%)/PPy/HRP, respectively. Optimal response of the fabricated electrodes was obtained at pH 7 and an operational potential of ? 0.35 V. It was observed that effective enzyme immobilization and electroactivity of the composite films could be changed by changing the ratios of GMA and MTM fractions of Poly(GMA‐co‐MTM) based working electrodes. CONCLUSION: The amount of electroactive enzyme increases with increasing MTM content of the final copolymer. High operational stabilities of the biosensors can be attributed to the strong covalent enzyme linkage via the epoxy groups of GMA due to preventing enzyme deterioration and loss. A more convenient microenvironment for mass transfer was provided for the electrodes by higher GMA ratios. It is observed that mass transfer is dominated by the mechanism of electron transfer to obtain effective sensitivity values. This work contributes to discussions clarifying the problems regarding the design parameters of biosensors. Copyright © 2011 Society of Chemical Industry  相似文献   

12.
Anchoring the hydroxyaspartic acid onto poly(glycidyl methacrylate‐co‐ethylene dimethacrylate) (poly(GMA‐co‐EDMA)) beads or epoxysuccinic acid onto ammonium‐modified poly(GMA‐co‐EDMA) beads resulted in a novel chelating resin, which contained up to 0.37 mmol of the ligand per gram of resin. Batch extraction experiments showed a very high selectivity for Cu2+ over Zn2+ and Cd2+ ions in buffered solutions under competitive conditions. © 2001 John Wiley & Sons, Inc. J Appl Polym Sci 80: 913–916, 2001  相似文献   

13.
In this study, synthesis, characterization, partial hydrolysis, and salt formation of poly(2‐hydroxyethyl methacrylate)‐co‐poly(4‐vinyl pyridine), (poly(HEMA)‐co‐poly‐(4‐VP)) copolymers were investigated. The copolymers were synthesized by free radical polymerization using K2S2O8 as an initiator. By varying the monomer/initiator ratio, chain lengths of the copolymers were changed. The copolymers were characterized by gel permeation chromatography (GPC), viscosity measurements, 1H and 13C NMR and FTIR spectroscopies, elemental analysis, and end group analysis methods. The copolymers were partially hydrolyzed by p‐toluene sulfonic acid monohydrate (PTSA·H2O) and washed with LiOH(aq) solution to prepare electrorheological (ER) active ionomers, poly(Li‐HEMA)‐co‐poly(4‐VP). © 2006 Wiley Periodicals, Inc. J Appl Polym Sci 99: 3540–3548, 2006  相似文献   

14.
《Polymer Composites》2017,38(6):1206-1214
Poly(glycidyl methacrylate‐co‐ethylene glycol dimethacrylate) (poly(GMA‐co‐EGDMA) macroporous copolymer decorated with silver nanoparticles was prepared by a modification of poly(GMA‐co‐EGDMA) in the reaction with arginine, and consequent reduction of silver ions with amino groups. The mercury intrusion porosimetry, transmission electron microscopy, X‐ray diffraction, UV–vis reflection spectroscopy, and inductively coupled plasma atomic emission measurements were used to characterize obtained composite. The coordination of silver nanoparticles to the poly(GMA‐co‐EGDMA) copolymer was studied using infrared spectroscopy. Time dependence and concentration dependence of the antimicrobial efficiency of composite were tested against Gram‐negative bacteria Escherichia coli , Gram‐positive bacteria Staphylococcus aureus , and fungus Candida albicans . The composite ensured maximum reduction of both bacteria, while the fungi reduction reached satisfactory 96.8%. Preliminary antimicrobial efficiency measurements using laboratory flow setup indicated potential applicability of composite for wastewater treatment. POLYM. COMPOS., 38:1206–1214, 2017. © 2015 Society of Plastics Engineers  相似文献   

15.
Defined diblock and triblock copolymers composed of methyl methacrylate‐co‐glycidyl methacrylate block and 3‐{3,5,7,9,11,13,15‐hepta(2‐methylpropyl)‐pentacyclo[9.5.1.13,9.15,15.17,13]‐octasiloxan‐1‐yl}propyl methacrylate block(s), i.e., P(MMA‐co‐GMA)‐b‐PiBuPOSSMA and PiBuPOSSMA‐b‐P(MMA‐co‐GMA)‐b‐PiBuPOSSMA, were synthesized by atom transfer radical polymerization (ATRP). First, monofunctional and bifunctional P(MMA‐co‐GMA) copolymers were synthesized by ATRP. Subsequently, these copolymers were successfully used as macroinitiators for ATRP of POSS‐containing methacrylate monomer. The process showed high initiation efficiency of macroinitiators and led to products with low dispersity. The synthesized block copolymers were characterized by size exclusion chromatography, 1H‐NMR spectroscopy and their glass transition temperatures were determined by differential scanning calorimetry. © 2012 Wiley Periodicals, Inc. J. Appl. Polym. Sci., 2013  相似文献   

16.
Porous poly(2‐hydroxyethyl methacrylate‐methyl methacrylate) particles crosslinked with ethylene glycol dimethacrylate were synthesized by free‐radical suspension copolymerization in an aqueous phase initiated by an oil‐soluble initiator, 2,2‐azobisisobutyronitrile. 1‐octanol was used as a pore forming agent (porogen). The porous structures, the particle morphology, and the swelling capacity of the resultant polymer in water at room temperature were studied at different crosslink densities and under various porogen concentrations. The analysis via Scanning Electronic Microscopy (SEM) indicated that permanent pores remained in the dried polymeric particles prepared in the presence of the porogen at certain crosslink densities. According to the studies via the SEM pictures and the pore size distributions, higher porogen concentration promotes the formation of more pores, and higher crosslink density results in narrower pore size distribution. The swelling capacity of the particles in water at room temperature decreases with an increase in the crosslink density, and the existence of the highly porous structures enhances the swelling capacity of the porous particles of poly(2‐hydroxyethyl methacrylate‐methyl methacrylate). © 2006 Wiley Periodicals, Inc. J Appl Polym Sci 103: 707–715, 2007  相似文献   

17.
A multistage polymerization protocol, the so‐called “modified seeded polymerization,” was developed for the production of monodisperse‐porous poly(styrene‐co‐divinylbenzene) providing high column efficiency as a packing material in reversed phase high performance liquid chromatography (RPLC). In the first stage of the multistage production, uniform polystyrene seed particles, produced by dispersion polymerization, were swollen by an organic agent (i.e., the diluent) and then by a monomer mixture containing styrene and divinylbenzene. The final porous particles were obtained in the monodisperse form by the polymerization of monomer mixture in the seed particles. By the use of a small size seed latex with low molecular weight and by the selection of the appropriate diluent, relatively small monodisperse‐porous particles with suitable pore structure could be achieved. In the reversed phase separation of alkylbenzenes, under isocratic conditions, theoretical plate numbers up to 40,000 plates/m were achieved by using 5.2 μm porous particles, obtained by a toluene‐dibutyl phthalate mixture as the diluent. No significant decrease in the resolution power was observed by the fourfold increase in the mobile phase flow rate. The column efficiency and the resolution observed with 5.2 μm monodisperse‐porous particles were significantly higher with respect to the currently available polymer based packing materials used in the reversed phase HPLC. © 2005 Wiley Periodicals, Inc. J Appl Polym Sci 95: 1430–1438, 2005  相似文献   

18.
A novel macroporous poly(glycidyl methacrylate‐triallyl isocyanurate‐ethyleneglycol dimethacrylate) copolymer, hereinafter PGMA‐TAIC‐EGDMA, of controlled bead size was prepared via free radical suspension copolymerization. The effects of varying the concentration of crosslinking agents and porogenic diluent on the average pore diameter, pore size distributions, specific surface area, and pore volume of the copolymer matrix were thoroughly investigated. The spherical beads were characterized by elemental analysis, Fourier transform infrared spectroscopy, and thermogravimetric analysis. The specific pore volume, average pore diameter, pore size distribution, and the specific surface area were measured by Mercury intrusion porosimetry and BET adsorption method, respectively. The porous properties of the polymer matrix are a direct consequence of the amount and quality of the porogenic solvent, the percentage of crosslinking monomers, and the ratio between the monomers and porogen phases. When the polymer was prepared at 30 and 40% crosslinking density, and 75 and 100% diluents, respectively, it showed a fine beads morphology, mechanical stability and pore size distributions. By comparing the copolymers PGMA‐TAIC‐EGDMA and PGMA‐EGDMA, it was found that the former is more stable both thermally and mechanically than its predecessor. The presence of epoxide functionalities of macroporous PGMA‐TAIC‐EGDMA beads makes it a versatile carrier. The resulting polymers have the potential for wide applications. © 2011 Wiley Periodicals, Inc. J Appl Polym Sci, 2012  相似文献   

19.
The successful reversible addition‐fragmentation (RAFT)‐mediated graft polymerization of glycidyl methacrylate (GMA) in emulsion phase from polyethylene/polypropylene nonwoven fabric using 4‐cyano‐4‐[(phenylcarbonothioyl)thio]pentanoic acid under γ‐irradiation at ambient condition is reported. While conventional graft polymerization in emulsion phase yielded grafted materials with low of grafting (Dg) values [<7.5% at 10% (wt/wt) GMA], addition of RAFT agent to the graft polymerization system allowed the synthesis of polyethylene/polypropylene‐g‐poly(GMA) with more tunable Dg (8% ≤ Dg ≤ 94%) by controlling the grafting parameters. Relatively good control (PDI ~1.2 for selected grafting conditions) during polymerization was attained at 100:1 monomer‐to‐RAFT agent molar ratio. The number average molecular weight of free poly(glycidyl methacrylate) (PGMA) increased as a function of monomer conversion. NMR analyses of the free PGMA homopolymers indicate the presence of dithiobenzoate group from 4‐cyano‐4‐((phenylcarbonothioyl)thio) pentanoic acid on the polymer chain. The reactive pendant oxirane group of the grafted GMA can be modified for various environmental and industrial applications. © 2017 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2017 , 134, 45270.  相似文献   

20.
A pH‐sensitive hydrogel [P(CE‐co‐DMAEMA‐co‐MEG)] was synthesized by the free‐radical crosslinking polymerization of N,N‐dimethylaminoethyl methacrylate (DMAEMA), poly(ethylene glycol) methyl ether methacrylate(MPEG‐Mac) and methoxyl poly(ethylene glycol)‐poly(caprolactone)‐methacryloyl methchloride (PCE‐Mac). The effects of pH and monomer content on swelling property, swelling and deswelling kinetics of the hydrogels were examined and hydrogel microstructures were investigated by SEM. Sodium salicylate was chosen as a model drug and the controlled‐release properties of hydrogels were pilot studied. The results indicated that the swelling ratios of the gels in stimulated gastric fluids (SGF, pH = 1.4) were higher than those in stimulated intestinal fluids (SIF, pH = 7.4), and followed a non‐Fickian and a Fickian diffusion mechanism, respectively. In vitro release studies showed that its release rate depends on different swelling of the network as a function of the environmental pH and DMAEMA content. SEM micrographs showed homogenous pore structure of the hydrogel with open pores at pH 1.4. © 2014 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2014 , 131, 40737.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号