首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 234 毫秒
1.
Within a IUPAC study, melt processing, mechanical, and fatigue crack growth properties of blends of polyamide 6 (PA 6) and poly(acrylonitrile–butadiene–styrene) (ABS) were investigated. We focused on the influence of reactive compatibilization on blend properties using a styrene–acrylonitrile–maleic anhydride random terpolymer (SANMA). Two series of PA 6/ABS blends with 30 wt % PA 6 and 70 wt % PA 6, respectively, were prepared with varying amounts of SANMA. Our experiments revealed that the morphology of the matrix (PA 6 or ABS) strongly affects the blend properties. The viscosity of PA 6/ABS blends monotonically increases with SANMA concentration because of the formation of high‐molecular weight graft copolymers. The extrudate swell of the blends was much larger than that of neat PA 6 and ABS and decreased with increasing SANMA concentrations at a constant extrusion pressure. This observation can be explained by the effect of the capillary number. The fracture resistance of these blends, including specific work to break and impact strength, is lower than that of PA 6 or ABS alone, but increases with SANMA concentration. This effect is most strongly pronounced for blends with 70 wt % PA 6. Fatigue crack growth experiments showed that the addition of 1–2 wt % SANMA enhances the resistance against crack propagation for ABS‐based blends. The correlation between blend composition, morphology and processing/end‐use properties of reactively compatibilized PA 6/ABS blends is discussed. © 2011 Wiley Periodicals, Inc. J Appl Polym Sci, 2012  相似文献   

2.
A polycarbonate (PC)/ poly (styrene‐co‐acrylonitrile) (SAN) alloy modified with styrene‐ethylene‐butylene‐styrene (SEBS) block copolymer was prepared and the influence of SEBS content, PC content, and types of modifier on Izod notched impact strength, tensile strength, flexural strength, and Vicat softening temperature was studied. The results showed that the addition of SEBS could obviously increase the Izod notched impact strength and the elongation at break and decrease the tensile and flexural strength and Vicat softening temperature. PC/SAN alloy modified with SEBS had better mechanical properties than the PC/SAN alloy modified with ABS. DSC analysis and SEM photographs revealed that the SEBS was not only distributed in the SAN phase but also distributed in PC phase in a PC/SAN/SEBS alloy while the ABS was mainly distributed in SAN phase in a PC/SAN/ABS alloy. © 2007 Wiley Periodicals, Inc. J Appl Polym Sci, 2007  相似文献   

3.
Polyamide (PA) and acrylonitrile/butadiene/styrene copolymer (ABS) may appear as a mixture in the recycled plastic stream. The incompatibility of these blends results in a blend with poor mechanical properties. The aim of this work is to partially convert the nitrile groups of the acrylonitrile/styrene copolymer (SAN) into oxazoline groups by reaction with aminoethanol (AE). Such modified SAN (SAN‐m) can react with the amine or carboxylic acid end groups of PA, and therefore used as compatibilizers for blends of PA with ABS. SAN‐m was found to reduce the SAN‐domain size in the PA/SAN‐blends. The initial acrylonitrile content of SAN‐m had a strong influence on the degree of conversion into oxazoline groups and on the compatibilizing effect. Mechanical properties of SAN‐m compatibilized PA/ABS blends were investigated. © 2002 Wiley Periodicals, Inc. J Appl Polym Sci 86: 449–455, 2002  相似文献   

4.
The ductile–brittle transition temperatures were determined for compatibilized nylon 6/acrylonitrile‐butadiene‐styrene (PA6/ABS) copolymer blends. The compatibilizers used for those blends were methyl methacrylate‐co‐maleic anhydride (MMA‐MAH) and MMA‐co‐glycidyl methacrylate (MMA‐GMA). The ductile–brittle transition temperatures were found to be lower for blends compatibilized through maleate modified acrylic polymers. At room temperature, the PA6/ABS binary blend was essentially brittle whereas the ternary blends with MMA‐MAH compatibilizer were supertough and showed a ductile–brittle transition temperature at ?10°C. The blends compatibilized with maleated copolymer exhibited impact strengths of up to 800 J/m. However, the blends compatibilized with MMA‐GMA showed poor toughness at room temperature and failed in a brittle manner at subambient temperatures. © 2003 Wiley Periodicals, Inc. J Appl Polym Sci 90: 2643–2647, 2003  相似文献   

5.
The effect of simultaneous addition of multiwall carbon nanotubes (MWNTs) and a reactive compatibilizer (styrene maleic anhydride copolymer, SMA) during melt‐mixing on the phase morphology of 80/20 (wt/wt) PA6/ABS blend has been investigated. Morphological analysis through scanning and transmission electron microscopic analysis revealed finer morphology of the blends in presence of SMA + MWNTs. Fourier transform infrared spectroscopic analysis indicated the formation of imide bonds during melt‐mixing. Non‐isothermal crystallization studies exhibited the presence of a majority faction of MWNTs in the PA6 phase of 80/20 (wt/wt) PA6/ABS blend in presence of SMA + MWNTs. Rheological analysis, dynamic mechanical thermal analysis, and thermogravimetric analysis have demonstrated the compatibilization action of simultaneous addition of a reactive compatibilizer (SMA copolymer) and MWNTs in PA6/ABS blends. An attempt has been made to investigate the role of simultaneous addition of SMA copolymer and MWNTs on the morphology of 80/20 (wt/wt) PA6/ABS blend through various characterization techniques. POLYM. ENG. SCI., 55:457–465, 2015. © 2014 Society of Plastics Engineers  相似文献   

6.
Ternary polymer blends of 80/10/10 (wt/wt/wt) polyamide6 (PA6)/polypropylene (PP)/acrylonitrile‐butadiene‐styrene (ABS), PP/PA6/ABS, and ABS/PP/PA6 were prepared in the presence of multiwalled carbon nanotubes (MWCNTs) by melt‐mixing technique to investigate the influence of MWCNTs on the phase morphology, electrical conductivity, and the crystallization behavior of the PP and PA6 phases in the respective blends. Morphological analysis showed the “core–shell”‐type morphology in 80/10/10 PA6/PP/ABS and 80/10/10 PP/PA6/ABS blends, which was found to be unaltered in the presence of MWCNTs. However, MWCNTs exhibited “compatibilization‐like” action, which was manifested in a reduction of average droplet size of the dispersed phase/s. In contrast, a separately dispersed morphology has been found in the case of 80/10/10 ABS/PP/PA6 blends in which both the phases (PP and PA6) were dispersed separately in the ABS matrix. The electrical percolation threshold for 80/10/10 PA6/PP/ABS and 80/10/10 PP/PA6/ABS ternary polymer blends was found between 3–4 and 2–3 wt% of MWCNTs, respectively, whereas 80/10/10 ABS/PP/PA6 blends showed electrically insulating behavior even at 5 wt% of MWCNTs. Nonisothermal crystallization studies could detect the presence of MWCNTs in the PA6 and the PP phases. POLYM. ENG. SCI., 2011. © 2011 Society of Plastics Engineers  相似文献   

7.
Dynamic viscoelastic properties of blends of poly(methyl methacrylate) (PMMA) and poly(styrene‐co‐acrylonitrile) (SAN) with various AN contents were measured to evaluate the influence of SAN composition, consequently χ parameter, upon the melt rheology. PMMA/SAN blends were miscible and exhibited a terminal flow region characterized by Newtonian flow, when the acrylonitrile (AN) content of SAN ranges from 10 to 27 wt %. Whereas, PMMA/SAN blends were immiscible and exhibited a long time relaxation, when the AN content in SAN is less than several wt % or greater than 30 wt %. Correspondingly, melt rheology of the blends was characterized by the plots of storage modulus G′ against loss modulus G″. Log G′ versus log G″ plots exhibited a straight line of slope 2 for the miscible blends, but did not show a straight line for the immiscible blends because of their long time relaxation mechanism. The plateau modulus, determined as the storage modulus G′ in the plateau zone at the frequency where tan δ is at maximum, varied linearly with the AN content of SAN irrespective of blend miscibility. This result indicates that the additivity rule holds well for the entanglement molecular weights in miscible PMMA/SAN blends. However, the entanglement molecular weights in immiscible blends should have “apparent” values, because the above method to determine the plateau modulus is not applicable for the immiscible blends. Effect of χ parameter on the plateau modulus of the miscible blends could not be found. © 2008 Wiley Periodicals, Inc. J Appl Polym Sci, 2008  相似文献   

8.
Blends of polyamide6 (PA6) and acrylonitrile butadiene styrene (ABS) were prepared in presence or absence of up to 5 wt % of a reactive compatibilizer [styrene maleic anhydride copolymer (SMA) modified with 5 wt % multiwall carbon nanotubes (MWNT)] by melt‐mixing using conical twin screw microcompounder where the ABS content was varied from 20 to 50 wt %. The melt viscosity of the blends was significantly enhanced in presence of SMA modified by multiwall carbon nanotubes due to the reactive compatibilization, which leads to stabilized interphase in the blends. Furthermore, the presence of MWNT in the compatibilizer phase led to additional increase in viscosity and storage modulus. Morphological studies revealed the presence of either droplet‐dispersed or cocontinuous type depending on the blend compositions. Further, reactive compatibilization led to a significant change in the morphology, namely a structure refining, which was enhanced by MWNT presence as observed from SEM micrographs. DSC crystallization studies indicated a delayed crystallization response of PA6 in presence of ABS presumably due to high melt viscosity of ABS. The crystallization temperature and the degree of crystallinity were strongly dependent on the type of morphology and content of reactive compatibilizer, whereas the presence of MWNT had an additional influence. SAXS studies revealed the formation of thinner and less perfect crystallites of PA6 phase in the blends, which showed cocontinuous morphology. A unique observation of multiple scattering maxima at higher q region has been found in the blends of cocontinuous morphology, which was observed to be successively broadened in presence of the compatibilizer. © 2007 Wiley Periodicals, Inc. J Appl Polym Sci, 2007  相似文献   

9.
将聚酰胺6(PA6)与市售的丙烯腈-丁二烯-苯乙烯(ABS)树脂共混,制备PA6/ABS共混物。研究了ABS树脂的用量对PA6/ABS共混物力学性能的影响;采用苯乙烯及丙烯腈共聚物(SAN)和ABS粉料熔融共混制得不同胶含量的ABS/SAN共混物。研究了不同胶含量的ABS/SAN共混物对PA6/ABS共混物力学性能的影响。在PA6/ABS/SAN共混物中引入苯乙烯-丙烯腈-马来酸酐共聚(SAM)树脂取代部分SAN树脂,研究了SAM树脂的加入及引入顺序的不同对共混物性能的影响。结果表明, ABS树脂的用量在50%~60%左右时共混物性能最佳。随ABS/SAN共混物胶含量提高,共混物的拉伸强度、弹性模量、弯曲强度和弯曲模量逐渐降低。随SAM树脂替代SAN量增加,共混物的拉伸和弯曲性能先降低后增加。但共混物熔体流动速率降低明显,而SAM树脂的引入顺序对共混物的力学性能影响不大。  相似文献   

10.
The thermal behavior and morphology of multicomponent blends based on PA6, polyamide 6 (PA6)/styrene–acrylonitirle copolymer (SAN), PA6/acrylonitrile–butadiene–styrene terpolymer (ABS), and their compatibilized blends with styrene–acrylonitrile–maleic anhydride copolymer (SANMA) were studied using DSC and SEM. The blends were prepared in a twin‐screw extruder under similar processing conditions, keeping the PA6 content fixed at 50 wt %. It was found that, in all the blends, the second component had a nucleating effect and improved the overall degree and rate of crystallization of PA6, whereas addition of a compatibilizer slightly diminished these effects and resulted in significant changes in the blend morphology. The nucleating effect and consequent changes in the crystallization behavior was attributed to the presence of SAN, which is a common component in all the blends. The Tg of PA6 in the blends with a cocontinuous morphology, due to the connectivity between the phases, is higher than in the blends with a disperse‐type morphology. The compatibilized blends have a lower crystallization rate and nucleation ability with a cocontinuous morphology, whereas the uncompatibilized blends have a higher crystallization rate with a higher nucleation ability and a disperse and/or a coarse cocontinuous morphology. © 2002 Wiley Periodicals, Inc. J Appl Polym Sci 84: 2753–2759, 2002  相似文献   

11.
The effects of compatibilization on the toughening of polypropylene (PP) by melt blending with styrene/ethylene‐butylene/styrene tri‐block copolymer (SEBS) in a twin‐screw extruder were investigated. The compatibilizers used were SEBS functionalized with maleic anhydride (SEBS‐g‐MA), PP functionalized with acrylic acid (PP‐g‐AA), and bifunctional compound p‐phenylenediamine (PPD). The effects of the compatibilization were evaluated through the mechanical properties as well as through the determination of the phase morphology of the blends by scanning electron microscopy. Reactive compatibilized blends show up to a 30‐fold increase in impact strength compared with neat PP; likely the result of the reaction of the bifunctional compound (PPD) with the acid acrylic and maleic anhydride groups, this increase in strength rendered both morphological and mechanical stability to these blends. The addition of PPD to the blends significantly changed their phase morphologies, leading to larger average diameters of the dispersed particles, probably as a result of the morphological stabilization at the initial processing steps during extrusion, with the occurrence of chemical reactions. © 2002 Wiley Periodicals, Inc. J Appl Polym Sci 86: 3466–3479, 2002  相似文献   

12.
Polyamide6 (PA6)/acrylonitrile butadiene styrene copolymer (ABS) blends with unmodified multiwall carbon nanotubes (MWNTs) were prepared via melt‐blending in a conical twin‐screw micro‐compounder with varying melt‐mixing time. To improve the state of dispersion of MWNTs, non‐covalent organic modifiers for MWNTs have been utilized: sodium salt of 6‐amino hexanoic acid (Na‐AHA) and 1‐pyrene‐carboxaldehyde (PyCHO). PA6/ABS blends with MWNTs have shown a phase morphology transition from ‘matrix‐dispersed droplet’ type to ‘co‐continuous’ type as a function of melt‐mixing time with the exception of 40/60 PA6/ABS blend with PyCHO‐modified MWNTs. Non‐isothermal crystallization studies revealed the heterogeneous nucleating action of MWNTs through the presence of double crystallization exothermic peaks (at ~192°C and >200°C) while pure PA6 shows bulk crystallization peak at ~192°C. 40/60 and 60/40 (wt/wt) PA6/ABS blends with 5 wt% unmodified MWNTs exhibited electrical conductivity values of ~3.9 × 10?11 S/cm and ~4.36 × 10?6 S/cm, respectively. A significant enhancement in electrical conductivity was observed with Na‐AHA and PyCHO‐modified MWNTs (order of ~10?6 and ~10?4 S/cm, respectively). POLYM. ENG. SCI., 55:429–442, 2015. © 2014 Society of Plastics Engineers  相似文献   

13.
Multiwall carbon nanotubes (MWNTs) were melt‐mixed in polyamide 6 (PA6) and acrylonitrile–butadiene–styrene (ABS) copolymer blends using a simultaneous mixing protocol in order to investigate the state of dispersion of MWNTs in PA6/ABS blends. The blend composition was varied from 40/60 (wt/wt) to 60/40 (wt/wt) in PA6/ABS blends, which showed ‘co‐continuous’ morphology in the presence of MWNTs. State of dispersion of MWNTs in these blends was assessed through bulk electrical conductivity measurements, morphological analysis, solution experiments, and UV‐vis spectroscopic analysis. MWNTs were subsequently modified with a novel organic modifier, sodium salt of 6‐aminohexanoic acid (Na‐AHA), to improve the state of dispersion of MWNTs. Blends with unmodified MWNTs exhibited the DC electrical conductivity in the range ~10?11 to ~10?5 S/cm, whereas blends with Na‐AHA‐modified MWNTs exhibited DC electrical conductivity in the range ~10?7 to ~10?5 S/cm. The reduction in MWNTs ‘agglomerate’ size (~73.7 μm for 40/60 blend with unmodified MWNTs to ~59.9 μm in the corresponding blend with Na‐AHA‐modified MWNTs) was observed through morphological analysis. The rheological studies showed increased complex viscosity and storage moduli in lower frequency region in case of blends with Na‐AHA‐modified MWNTs confirming a refined ‘network‐like’ structure of MWNTs. POLYM. ENG. SCI., 55:443–456, 2015. © 2014 Society of Plastics Engineers  相似文献   

14.
The aim of this work is to evaluate routes to upgrade recycled engineering plastics, especially mixed plastics with acrylonitrile–butadiene–styrene copolymers (ABS) as the major component. A core‐shell impact modifier was successfully used to improve the impact strength of blends of ABS and ABS/polycarbonate (PC) blends recycled from the automotive industry. However, the presence of other immiscible components like polyamide (PA), even in small amounts, can lead to a deterioration in the overall properties of the blends. A styrene–maleic anhydride (SMA) copolymer and other commercial polymer blends were used to promote the compatibilization of ABS and PA. The core‐shell impact modifier was again found to be an efficient additive with regard to the impact strength of the compatibilized ABS/PA blends. The results obtained with fresh material blends were quite promising. However, in blends of recycled ABS and glass‐fiber‐reinforced PA, the impact strength did not exhibit the desired behavior. The presence of poorly bonded glass fibers in the blend matrix was the probable reason for the poor impact strength compared with that of a blend of recycled ABS and mineral‐filled PA. Although functionalized triblock rubbers (SEBS–MA) can substantially enhance the impact strength of PA, they did not improve the impact strength of ABS/PA blends because the miscibility with ABS is poor. The possibilities of using commercial polymer blends to compatibilize otherwise incompatible polymer mixtures were also explored giving promising results. © 2002 Wiley Periodicals, Inc. J Appl Polym Sci 86: 2535–2543, 2002  相似文献   

15.
Tetramethylpolycarbonate‐block‐poly(styrene‐co‐acrylonitrile) (TMPC‐block‐SAN) block copolymers containing various amounts of acrylonitrile (AN) were examined as compatibilizers for blends of polycarbonate (PC) with poly(styrene‐co‐acrylonitrile) (SAN) copolymers. To explore the effects of block copolymers on the compatibility of PC/SAN blends, the average diameter of the dispersed particles in the blend was measured with an image analyzer, and the interfacial properties of the blends were analyzed with an imbedded fibre retraction technique and an asymmetric double‐cantilever beam fracture test. Reduction in the average diameter of dispersed particles and effective improvement in the interfacial properties was observed by adding TMPC‐block‐SAN copolymers as compatibilizer of PC/SAN blend. TMPC‐block‐SAN copolymer was effective as a compatibilizer when the difference in the AN content of SAN copolymer and that of SAN block in TMPC‐block‐SAN copolymer was less than about 10 wt%. Copyright © 2004 Society of Chemical Industry  相似文献   

16.
In this article, a series of blends of monomer casting polyamide 6 and styrene‐co‐acrylonitrile (MCPA6/SAN) were prepared by in situ anionic ring‐opening polymerization of ?‐caprolactam. Their morphology and thermal behaviors were investigated by means of scanning electron microscope, differential scanning calorimeter, and wide‐angle X‐ray diffraction (WAXD), respectively. The SAN phase had much finer domain in MCPA6/SAN than that in the PA6/SAN blends prepared by melt blending of PA6 and SAN. All the melting and crystallization parameters of MCPA6/SAN blends decreased gradually with the increase of SAN content, while the melting temperature was almost unchanged. These results were due to the hydrolysis reaction of SAN that occurred during the anionic polymerization of ?‐caprolactam. In addition, WAXD results showed that only α crystal forms existed in the MCPA6/SAN blends. In addition, the mechanical property of MCPA6 was improved obviously by incorporating a certain amount of SAN. © 2006 Wiley Periodicals, Inc. J Appl Polym Sci 100: 1357–1363, 2006  相似文献   

17.
The morphology and mechanical properties of polycarbonate (PC) blends with rubber‐toughened styrene–maleic anhydride copolymer materials (TSMA) were investigated and compared with the properties of blends of PC with acrylonitrile–butadiene–styrene (ABS) materials. The PC/TSMA blends showed similar composition dependence of properties as the comparable PC/ABS blends. Polycarbonate blends with TSMA exhibited higher notched Izod impact toughness than pure PC under sharp‐notched conditions but the improvements are somewhat less than observed for similar blends with ABS. Since PC is known for its impact toughness except under sharp‐notched conditions, this represents a significant advantage of the rubber‐modified blends. PC blends with styrene–maleic anhydride copolymer (SMA) were compared to those with a styrene–acrylonitrile copolymer (SAN). The trends in blend morphology and mechanical properties were found to be qualitatively similar for the two types of copolymers. PC/SMA blends are nearly transparent or slightly pearlescent. © 1999 John Wiley & Sons, Inc. J Appl Polym Sci 74: 1508–1515, 1999  相似文献   

18.
王硕  刘哲  盛光  吕洁  郭阳  李刚 《弹性体》2010,20(1):46-52
采用种子乳液聚合技术在聚丁二烯(PB)乳胶粒子上接枝共聚苯乙烯(St)、α-甲基苯乙烯(α—MSt)和丙烯腈(AN)单体,合成了一系列不同AN结合量的ABS和α—MABS接枝共聚物。将其与聚氯乙烯(PVC)树脂熔融共混制得了PVC/AtkS共混物,利用扫描电镜(SEM)、透射电镜(TEM)和动态力学分析仪(DMA)对共混物的相容性和相结构进行了表征。结果发现,在PVC/ABS共混体系中,尽管改变接枝SAN共聚物的AN结合量,PVC和ABS接枝共聚物均为不相容体系;在ABS接枝共聚物中引入α-MSt后,当接枝SAN共聚物的AN结合量为18.7%~23.6%(质量分数)时,共混物在室温以上只存在1个tanδ峰,共混物成为相容体系,当AN结合量达到32.1%(质量分数)时,共混物成为部分相容体系。共混物的相区尺寸明显地依赖于接枝SAN共聚物中的AN结合量,与动态力学性能结果表现出良好的吻合。  相似文献   

19.
Polybutadiene‐g‐poly(styrene‐co‐acrylonitrile) (PB‐g‐SAN) impact modifiers with different polybutadiene (PB)/poly(styrene‐co‐acrylonitrile) (SAN) ratios ranging from 20.5/79.5 to 82.7/17.3 were synthesized by seeded emulsion polymerization. Acrylonitrile–butadiene–styrene (ABS) blends with a constant rubber concentration of 15 wt % were prepared by the blending of these PB‐g‐SAN copolymers and SAN resin. The influence of the PB/SAN ratio in the PB‐g‐SAN impact modifier on the mechanical behavior and phase morphology of ABS blends was investigated. The mechanical tests showed that the impact strength and yield strength of the ABS blends had their maximum values as the PB/SAN ratio in the PB‐g‐SAN copolymer increased. A dynamic mechanical analysis of the ABS blends showed that the glass‐transition temperature of the rubbery phase shifted to a lower temperature, the maximum loss peak height of the rubbery phase increased and then decreased, and the storage modulus of the ABS blends increased with an increase in the PB/SAN ratio in the PB‐g‐SAN impact modifier. The morphological results of the ABS blends showed that the dispersion of rubber particle in the matrix and its internal structure were influenced by the PB/SAN ratio in the PB‐g‐SAN impact modifiers. © 2005 Wiley Periodicals, Inc. J Appl Polym Sci 98: 2165–2171, 2005  相似文献   

20.
Bis(3‐triethoxysilylpropyl) tetrasulfane (TSS) was reacted with the silanol groups of the commercially available clay, Closite®25A (C25A) to prepare TSS‐C25A, which was melt‐compounded with acrylonitrile‐butadiene‐styrene copolymer (ABS). The tetra sulfide groups of TSS‐C25A may chemically react with the vinyl groups of ABS to enhance the interaction between the clay and ABS. The ABS/clay composites exhibited much higher tensile strength and elongation at break than the neat ABS. Especially the elongation at break of ABS/TSS‐C25A composite was 5 times higher than that of neat ABS. The X‐ray diffraction patterns of the clay showed that the d001 basal spacing was enlarged from 1.89 nm to 2.71–2.86 nm as a result of the compounding with ABS. According to the thermogravimetric analysis, the thermal decomposition of the composite took place at a slightly higher temperature than that of neat ABS. Intercalated/exfoliated coexisting structures were observed by transmission electron microscopy for the ABS/clay composites. © 2007 Wiley Periodicals, Inc. J Appl Polym Sci, 2008  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号