首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 828 毫秒
1.
刘皓  邓保炜  陈娟  白晓惠  张楠 《材料导报》2016,30(10):87-90
以兰炭粉为原料,水蒸汽为活化剂,采用物理活化法制备中孔活性炭。分别讨论了活化温度、活化时间、水蒸汽质量流量对活性炭碘吸附值的影响,并采用正交实验对工艺条件进行了优化。利用全自动物理吸附仪对活性炭的比表面积和孔结构进行表征。结果表明:随着活化温度的升高、活化时间的延长和水蒸汽流量的增大,活性炭的碘吸附值均呈现先升高后下降的变化规律。正交实验结果表明,水蒸汽活化兰炭粉的适宜条件为:活化温度900℃,活化时间60min,水蒸汽流量1.25g/min。此条件下制得的活性炭具有多级孔的特征,而且以中孔为主,其碘吸附值为924.45mg/g,比表面积为818.52m2/g。  相似文献   

2.
以无患子残渣为原料,KOH与K2CO3作为活化剂,采用微波炭化和活化两步法制备超高比表面积活性炭,通过正交实验优化活性炭的制备工艺,探讨了碱炭比、活化温度和活化时间对活性炭吸附亚甲基蓝吸附值的影响。利用N2吸脱附实验、XRD、FT-IR等实验技术,对制备的活性炭结构与性能进行了表征。结果表明,在碱炭质量比为4∶1、活化温度800℃、活化时间30 min的条件下,所制备的活性炭对亚甲基蓝吸附值为595 mg/g,BET比表面积为3 479 m2/g,吸附累积总孔容达1.8262 cm3/g,平均孔径为2.0997 nm。  相似文献   

3.
NaOH活化法制备高比表面积稻壳活性炭   总被引:1,自引:0,他引:1  
以农业废弃物稻壳为原料,NaOH为活化剂,制备了中孔发达的高比表面活性炭,研究了碱炭比、活化温度对样品碘吸附值和亚甲基蓝吸附值的影响;采用SEM、TEM表征了活性炭的形貌,通过BET法计算了活性炭的比表面积,BJH方程计算出活性炭的孔径分布.结果表明,在碱炭比为3∶1、活化温度为750℃的工艺条件下制备的稻壳活性炭同时具有较高的碘吸附值和亚甲基蓝吸附值;稻壳活性炭比表面积高达2164m2/g,中孔含量达到63.67%,总孔容达到1.544mL/g.  相似文献   

4.
ZnCl2活化茄子秸秆制备活性炭及表征   总被引:2,自引:0,他引:2  
以茄子秸秆为原料、ZnCl2为活化剂制备活性炭。通过正交实验方法确定了制备活性炭的最佳工艺条件,采用低温氮气吸附、BET、Langmuir和BJH理论对其孔结构进行了表征,利用红外光谱分析样品的表面官能团,扫描电镜观察表面形貌。结果表明以茄杆活性炭的最佳工艺条件:浸渍比为2,浸渍时间为8h,活化温度为550℃,活化时间为60min,所得的活性炭的碘吸附值为1270.06mg/g,亚甲基蓝吸附值为17.4mL/g;BET和Langmuir比表面积分别为1649.615和1851.649m2/g,吸附总孔容为0.488cm3/g,吸附平均孔径为2.241nm。  相似文献   

5.
以马尾藻为原料,采用KOH活化法制备用于超级电容器的生物质基超级活性炭。制备的超级活性炭不仅比表面积巨大,孔隙结构丰富,而且以海藻作为前驱体原料明显降低了活性炭的生产成本。采用单因素实验法分析了浸渍比、活化温度和活化时间对马尾藻基活性炭孔隙结构(比表面积、孔容及孔径分布等)的影响,探索了制备马尾藻基超级活性炭的最佳工艺条件,并研究了所制活性炭用于制备超级电容器时的电化学性能。采用N2吸附-解吸附、SEM、XRD,恒电流充放电以及循环伏安法等表征手段考察超级活性炭样品的比表面积,孔结构以及电化学性能。实验结果表明,制备马尾藻基超级活性炭的最佳工艺条件为:浸渍比4∶1,活化时间120min,活化温度800℃。在该实验条件下制得的活性炭比表面积高达2926m2/g,孔容高达1.536cm3/g,且所有活性炭的孔径大小几乎全部分布在4nm以内,孔径分布均匀。制备的超级电容器以6mol/L的KOH为电解液时,其比电容高达358.5F/g,表现出良好的电化学性能。  相似文献   

6.
以马尾藻为原料,采用KOH活化法制备高比表面积活性炭。探索制备马尾藻基活性炭的实验方案和最佳工艺条件。采用正交实验法研究了炭化温度、炭化时间、低温活化温度、低温活化时间和浸渍时间对制得活性炭比表面积和孔容的影响。采用N_2吸附、SEM表征考察了活性炭的孔隙结构和表面形貌。通过正交实验法分析发现,制备马尾藻基高比表面积活性炭的最佳工艺条件为:炭化温度600℃,炭化时间180min,低温活化温度400℃,低温活化时间45min,浸渍时间2h。在16组实验条件下,制备的活性炭比表面积最大为3 122m2/g,所有样品的孔径几乎全部分布在6nm以内。  相似文献   

7.
紫茎泽兰同时制备活性炭及高热值燃气实验研究   总被引:2,自引:1,他引:1  
以紫茎泽兰为原料,通过物理活化同时制得活性炭和高热值燃气。考察了活化温度、时间、CO2流量对多孔碳产品吸附性能和得率的影响。通过响应曲面法得到实验优化工艺条件:活化温度980℃,活化时间130min,CO2流量400mL/min,所制得活性炭碘吸附值和得率分别为1002mg/g,15.79%。制得的多孔碳BET比表面积、孔容和平均孔径分别为1076m2/g、0.63mL/g、2.36nm。在此优化条件下得到高热值燃气,燃气热值达11542.32kJ/m3。  相似文献   

8.
活性炭因具有高比表面积和丰富的孔结构而被广泛应用于吸附水处理中的污染物。稻壳具有独特的组成和微观结构, 是制备活性炭的优质碳源。以稻壳为原料, 利用过饱和KOH溶液的预活化和活化双重作用, 在不同温度下制备出超高比表面积活性炭。随着活化温度的升高, 活性炭的比表面积和总孔容逐渐增大。900 ℃下制得的活性炭具有超高比表面积, 达到3600 m2/g, 总孔容为3.164 cm3/g, 明显优于商用活性炭(YP-80, 比表面积为1310 m2/g, 总孔容为0.816 cm3/g)。具有最高比表面积的稻壳活性炭对亚甲基蓝的最大吸附量达到983 mg/g, 几乎是YP-80 (525 mg/g)的两倍。通过吸附动力学拟合, 吸附亚甲基蓝的过程与拟二级动力学模型一致, 表明该过程为化学吸附。  相似文献   

9.
以蔗糖为炭源,磷酸为活化剂制备出了膨胀石墨基炭/炭复合材料(EGCs).采用SEM和氮气吸附法对材料进行了表征.结果表明,复合材料保留了膨胀石墨的网络状孔隙结构,活性炭主要涂覆在膨胀石墨蠕虫二级孔的孔壁上,涂覆厚度在87nm左右.研究了磷酸/蔗糖比(Xp)、活化温度、活化时间对复合材料孔结构和比表面积的影响.在Xp=0.9、活化温度为350℃和活化时间为120min时所得的复合材料比表面积最高,达到1948m2/g,其对苯酚的吸附量为173.1mg/g,较同工艺制备的活性炭颗粒提高了24.8%.  相似文献   

10.
微波加热烟杆制备微孔活性炭的研究   总被引:6,自引:0,他引:6  
研究了微波加热烟杆氯化锌活化法制备微孔活性炭的新工艺.采用正交试验研究了氯化锌浓度、浸渍时间、微波功率和活化时间对活性炭得率和吸附性能的影响.最佳工艺条件为ZnCl2浓度25%,浸渍时间36h,微波功率为700W,加热时间为16 min时,所制备的活性炭的碘吸附值为1059.32 mg/g,亚甲基蓝吸附值为21 mL/0.1g,得率为32.90 %.该工艺将常规加热方法的预热、干燥、炭化和活化简化为一个过程,所需要加热时间仅为传统方法的1/13,产品活性炭的亚甲基蓝吸附值为国家一级品标准的2.33倍.同时测定了该活性炭的氮吸附等温线,通过BET法计算了活性炭的比表面积,并通过H-K方程、D-A方程和密度函数理论(DFT)表征了活性炭的孔结构.结果表明:该活性炭为微孔型,BET比表面积为1214m2/g,总孔容为0.7387 mL/g,微孔占总孔容74.03%,中孔占24.54%,大孔占1.43%.  相似文献   

11.
以红薯为原料分别采用物理活化(CO2活化)和化学活化(KOH活化)法制备活性炭。研究了不同活化温度和时间所得活性炭的比表面积和孔结构特征,并结合扫描电子显微镜、X射线衍射仪、比表面积分析仪等对其进行测试和表征。结果表明,KOH活化法在碳碱比为1∶3、活化温度为800℃、活化时间为5h时比表面积最高,达到1590m2/g,介孔率为20.3%;CO2活化法在800℃、活化2h时比表面积较高,为1054m2/g,介孔率可达62.0%。将该两组活性炭用作超级电容器电极材料时,以6M KOH作电解质表现出了典型的双电层电容器的特征,在5A/g的电流密度下,两者的比电容量分别为143F/g和187F/g。  相似文献   

12.
郭晖  张记升  朱天星  代治宇 《材料导报》2016,30(2):24-27, 33
以核桃壳为原料,采用KOH活化法制备活性炭,并将其用作超级电容器电极材料。利用N2吸附和扫描电镜(SEM)表征活性炭的孔结构及表面形貌,系统研究碱炭比(KOH与核桃壳炭化料的质量比)对活性炭孔结构的影响,并采用恒流充放电及循环伏安等测定核桃壳活性炭电极材料在3mol/L KOH电解液中的电化学性能。结果表明,随着碱炭比的增大,活性炭的比表面积、总孔容及中孔比例先逐渐增大后稍有减小。当活化温度为800℃,活化时间为1h,碱炭比为4时,可制备出比表面积为2404m2/g,总孔容为1.344cm3/g,中孔比例为28.6%,孔径分布在0.7~3.0nm之间的高比表面积活性炭。该活性炭用作超级电容器电极材料具有良好的大电流放电特性和优异的循环性能,电流密度由50mA/g提高到5000mA/g时,其比电容由340F/g降低到288F/g,经1000次循环后,比电容保持率为93.4%。  相似文献   

13.
Activated carbons (ACs) with very high specific surface areas up to approximately 900 m2/g and total pore volume up to 0.5 cm3/g were produced from a Canadian peat through chemical activation using either H3PO4 or ZnCl2 as the activation agent, followed by activation/carbonization in air at 450 °C for 45 min. ZnCl2 was found to be more effective for developing microporous structures in the ACs, while H3PO4 is more efficient in developing the mesopores. Demineralization of the AC precursor to remove intrinsic minerals greatly affected the development of pore structures during the activation process. The AC derived from the demineralized peat activated by ZnCl2 attained the highest BET surface area with significantly increased micro-/mesopores.  相似文献   

14.
NaOH活化法中碱炭比对孔结构和电化学性能的影响   总被引:1,自引:0,他引:1  
采用沥青焦为原料,以NaOH化学活化法制备出不同碱炭比(R)系列活性炭.用氮气吸附和脱附等温线计算出BET比表面积、DFT孔径分布及孔容,并且通过直流循环充放电、循环伏安等表征方法研究了其电化学性能.实验结果表明,R值对活性炭的BET比表面积、DFT孔径分布及孔容有良好的调控作用:当R=5时,其最大BET比表面积为1089m2/g,孔容达0.53cm3/g,当R=3时,其孔径分布在1.0-2.0nm百分比达36.2%;其直流循环充放电曲线较好,循环伏安曲线也近似矩形,表明具有良好双电子层电容器电极材料特性,在3mol/L的KOH电解液体系中,最大质量比电容、体积比电容、单位面积比电容分别达202F/g、143F/cm3、32.9μF/cm2;在1mol/L(C2H5)4NBF4/Propylene Carbonate(PC)电解液体系中,最大质量比电容、体积比电容、单位面积比电容分别达149F/g、107.3F/cm3、20μF/cm2.对KOH和(C2H5)4NBF4/PC电解质吸附的最佳孔径分别为1.3nm,1.5nm左右.  相似文献   

15.
采用KOH对催化裂解法制备的碳纳米管进行活化处理,以提高碳纳米管的比表面积,并调整孔结构。研究了活化温度和碱用量对活化碳纳米管的收率、比表面积、晶体结构、微观形貌和孔结构的影响。实验结果表明,通过KOH活化能有效地提高碳纳米管的比表面积,调整孔隙结构。随活化温度升高,活化碳纳米管的收率逐渐降低,比表面积和孔容则逐渐提高。通过活化,碳纳米管的内孔得到释放,有大量的微孔、中孔结构形成。增大碱用量时,收率降低,而比表面积和微孔孔容增加,在比值为7:1时比表面积达到最大值。通过研究发现,制备高比表面积碳纳米管的优化工艺条件为:KOH/CNTs的质量比为7:1,活化温度为900℃。此条件下所得碳纳米管的比表面积为360.1m^2/g,比未活化碳纳米管的比表面积(24.5m^2/g)提高了14倍。  相似文献   

16.
Preparation of hierarchical porous carbon by post activation   总被引:1,自引:0,他引:1  
Wei Xing  Xiuli Gao 《Materials Letters》2009,63(15):1311-1313
A series of hierarchical porous carbons (HPCs) have been prepared by a combination of soft-templating and post activation. As evidenced by N2 sorption tests, the pristine mesopores were basically preserved and micropores were generated on the mesopore wall of mesoporous carbon (MC). The micropore generation on the mesoporous skeleton can be controlled by simply adjusting the KOH ratio and activation temperature. The BET surface area, mesopore surface area and total pore volume of the HPCs increase monotonously with increasing activation temperature and KOH/MC ratio. In contrast, the micropore surface area reaches the maximum at the ratio of KOH/MC of 4. Further increase of KOH/MC ratio and activation temperature reduces the micropore surface area. Structural characterizations confirm that the main mesopore channel was preserved during activation.  相似文献   

17.
KOH活化法高比表面积竹质活性炭的制备与表征   总被引:7,自引:0,他引:7  
以竹屑为原料,研究了KOH活化法高比表面积活性炭的制备工艺.分别考察了浸渍比、活化温度、活化时间等工艺参数对产品吸附性能的影响,并提出了可能的活化机理.在所研究的实验条件下,最佳的制备工艺是浸渍比1.0,活化温度800℃,活化时间2h.所得到的活性炭产品的比表面积和孔容可达2996m2/g和1.64cm3/g.该产品附加值高,在吸附领域特别是在双电层电容器的电极材料领域有广阔的应用前景.  相似文献   

18.
双电层电容器用中孔活性炭电极的电化学性能   总被引:18,自引:6,他引:12  
选用中孔活性炭作为双电层电容器的电极材料,实验发现,中孔活性炭电化学性能优异,比表面积利用率高达93.5%,用水蒸气活化可以增加活性炭的比表面积,随着活化时间的延长,活性炭收率降低,活化2h收率仅为26.5%,同时比表面积从原来的760m^2/g增加到1480m^2/g,且主要在2nm附近孔结构分布强度增强,比电容随活化时间的延长而增加,但增速低于比表面积的增加幅度。  相似文献   

19.
煤炭作为一种来源广泛的非金属矿物,是制备大量多孔碳的理想原料。本文以1/3焦煤为原料,NaOH和KOH为活化剂,制备了多孔碳,并研究了硫/多孔碳复合正极材料的电化学性能。结果表明:采用NaOH和KOH单独活化时制备的多孔碳比表面积很大,分别为1 649 m2/g和1 867 m2/g,而采用NaOH和KOH混合活化制备的多孔碳比表面积大幅度下降,当NaOH与KOH质量比为1:1活化时多孔碳的比表面积最小,为290 m2/g。电化学测试表明,NaOH与KOH质量比为1:1混合活化的硫/多孔碳正极材料的电性能优于NaOH和KOH单独活化的硫/多孔碳正极材料,0.2 C下首次放电比容量为790 mA·h/g,库仑效率为93.16%,100次循环后放电比容量为740 mA·h/g。还分析讨论了煤基多孔碳孔径分布对电化学性能的影响。   相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号