首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 531 毫秒
1.
钢/玻璃的摩擦磨损性能动态观测研究   总被引:1,自引:0,他引:1  
本实验在自行设计的摩擦磨损动态观测实验机进行,摩擦副之间的接触采用球一盘式接触。研究表明:当以较低速度滑动时,钢球表面的氧化物起到抗磨作用;滑动速度达到一定值时,氧化膜的生成速度小于氧化膜的磨损速度,摩擦表面为粘着磨损;当滑动速度继续升高时,摩擦表面的活化能增加,氧化加速.又出现氧化磨损;而滑动速度过高时,粘着磨损成为主要磨损形式,同时由于磨粒的作用,表面也发生疲劳磨损和磨料磨损.致使磨损急剧增加;表面层在摩擦热导致的高温条件下,氧化膜的生成速度又有所增加,氧化磨损为主要形式。  相似文献   

2.
Measurements of friction and wear during sliding of specimens of Nimonic 75, C263, Nimonic 108 and Incoloy 901 on like specimens in air at temperatures from 20 to 800 C are presented. Under the sliding conditions used, all the alloys show a transition temperature, above which low wear and a low coefficient of friction during sliding are observed after a time and below which these parameters remain relatively high throughout. These temperatures are about 150 C for N75, about 200 C for C263 and N108 and between 200 and 300 for Incoloy 901. At given temperatures above the transition temperatures, the coefficient of friction-time loci show sharp, generally very reproducible, changes from relatively high to low coefficients of friction. The times at which these occur decrease with increasing temperature for a given alloy. Such changes can be closely correlated to the formation of a stable, adherent, thermally softened, oxide layer or glaze on the load-bearing areas during sliding. Once the glaze is established, very little further wear takes place. These tribological properties of the glaze are associated with its low shear strength and the high strength of the underlying alloy substrate. They depend more on its physical properties than on its precise chemical composition. It is concluded that high strength, relatively rapid transient oxidation rates, and appropriate physical properties of the resulting oxide films are important qualities in alloys employed under sliding conditions in air at elevated temperatures.  相似文献   

3.
M. Hua  H.Y. Tam  H.Y. Ma  C.K. Mok 《Wear》2006,260(11-12):1153-1165
Experiments were performed to investigate systematically the influence of sliding speeds on tribological behaviours of in-lined (IN), staggered (ST) spot-islandic and fully coated (FC) physical vapour deposition (PVD) TiN coatings on M2 steel discs sliding with ASSAB 17 tool steel pins. Results revealed that: (i) the friction coefficients of the individual mating couples generally decreased with the sliding speed and the order in increasing magnitude at each specific sliding speed was FC, IN, and ST pair, respectively and (ii) the wear loss was inversely related to the sliding speed, and the wear loss of both the pin and disc of FC mating pair was the largest with ST the second and IN the third. Relevant mechanisms for the friction and the wear loss are proposed and discussed in this paper.  相似文献   

4.
Further investigation of the relationships between friction and wear properties and the characteristics of acoustic emission was conducted in the case of dry and grease-lubricated sliding contact using a ball-on-cylinder testing apparatus. The effect of contamination simulated by the inclusion of glass bead particles was also explored. Experiments were performed at sliding speeds ranging from 0.09 m/s to 1.47 m/s, while maintaining a fixed load and duration. As a first observation and contrary to what could be expected, the higher speed did not contribute to the decrease in friction interpreted by a worsening of the starved regime that had a consequence of increasing wear. However, the results revealed a good correlation between the friction coefficient and acoustic emission (AE) rms voltage for dry sliding. Such a relationship may allow the prediction of a reasonable friction coefficient μ from an AE signal. It was also determined that the friction work correlated well with the corresponding integrated AE voltage over time, intRMS. The detection of the sliding speed threshold beyond which accelerated wear would occur was possible from the intRMS variation. Proportionality between the theoretically determined grease film thickness and the intRMS was observed.  相似文献   

5.
Peter J. Blau 《Wear》1981,71(1):29-43
Despite their complexities, friction and wear break-in behavior can provide important clues to the individual mechanistic contributions which interact to bring about longer-term sliding conditions. Because more than one mechanism could be responsible for given break-in curve shapes, more extensive experimentation in the effects of materials on the early stages of sliding needs to be undertaken. One method of relating friction and wear break-in behavior is the “break-in map” in which the duration (i.e. time, number of cycles or sliding distance) required for the attainment of a constant average friction coefficient is simply plotted against the duration required for the achievement of a constant wear rate under the same conditions. A method of portraying frictional break-ins is to plot the difference in the friction between initial sliding and steady state sliding against the break-in duration. The friction-wear method may facilitate wear-in monitoring in machinery while the friction difference-break-in duration method may lead to a better understanding of sliding friction mechanisms.  相似文献   

6.
The effects of non-friction time along with temperature and sliding velocity on the distance to achieve severe-mild wear transition are discussed using a twin-ring sliding type wear test rig. It became clear that as the non-friction time increased, while keeping the same velocity, the severe-mild wear transition distance increased. On the other hand, the transition distance from severe to mild wear decreased, as the sliding velocity decreased or as the specimen temperature increased. From these results, it is concluded that the low sliding speed accelerates the severe-mild wear transition by increasing the real friction time at the real area of contact.  相似文献   

7.
碳纤维增强聚醚醚酮PEEK450 FC30与工程陶瓷SiC软硬组合作为海水柱塞泵关键摩擦副备选材料,利用MCF 10摩擦磨损试验机对其在海水润滑下的摩擦磨损特性进行试验研究,探讨接触压力、滑动转速对材料磨损率和摩擦系数的影响规律。试验结果表明:在一定范围内的滑动速度、接触压力下,该摩擦副呈现出较小的磨损率和摩擦系数。当滑动速度在0.5~1.5 m/s之间,接触压力为1.33 MPa时,磨损率最小。通过扫描电子显微镜观察摩擦副磨损表层发现,在海水润滑下,SiC磨损并不明显,而PEEK450 FC30的磨损主要是以塑性涂抹为特征的粘着和SiC表面粗糙峰引起的机械犁耕。研究结果对水液压元件的选材具有十分重要的指导作用。  相似文献   

8.
研究碳纤维/聚四氟乙烯(CF/PTFE)、玻璃纤维/聚四氟乙烯(GF/PTFE)复合材料与氮化硅陶瓷配副在海水环境下的摩擦学性能与润滑机制,分析滑动速度对摩擦副海水润滑性能的影响规律。结果表明:在海水润滑条件下,随着滑动速度的增加,PTFE、CF/PTFE、GF/PTFE材料与Si3N4陶瓷配副时的摩擦学性能均有明显改善,摩擦因数与磨损率均呈显著降低的趋势,其中CF/PTFE复合材料表现出更为优异的摩擦学性能,在1 000 r/min滑动速度下摩擦因数低至0.026。磨损表面表征结果表明,在海水润滑条件下,PTFE基复合材料在摩擦过程中由于摩擦化学反应生成了润滑膜,可为摩擦副提供良好的润滑和减磨作用,从而减少摩擦磨损行为的发生。  相似文献   

9.
Due to the casting process for nylons, their composition can easily be modified to cover a wide range of mechanical properties and applications, especially as large wear surfaces in, for example, crane guidances. Presently, selection tests for working conditions up to 40MPa are presented on pure Na‐catalysed polyamides, oil‐filled polyamides with homogeneous oil dispersions and holes in the surface containing oil lubricant and two types of thermoplastic solid‐lubricated polyamides. Pure polyamides are, however, prone to high and unstable sliding at pressures as low as 10MPa with brittle fracture and lumpy transfer. Oil lubrication is not able to remove the sliding instabilities as oil supply to the sliding interface is controlled by migration effects that are restricted by deformation and thermal softening or melting of the polyamide matrix. Although friction and wear are lower and more stable for samples with oil supplied through lubricating holes, additional running‐in phenomena are attributed to a relatively thick transfer film that is brittle and easily peels off. A continuous thick molten film or island‐like deposition occurs on the polyamide surface. Solid lubricants are able to stabilize friction and lower wear down to the formation of a thin and coherent transfer film. However, increasing the amount of lubricants induces lower mechanical properties and higher deformation of the test samples. The differences in transfer behaviour are discussed with reference to optical microscopy and calculations of bulk and flash temperatures. Copyright © 2006 John Wiley & Sons, Ltd.  相似文献   

10.
This paper describes the tribological impacts of hydrocarbon refrigerants deployed in the domestic refrigerator hermetic compressor. In-use durability is examined from a tribological viewpoint. Experimental tribological information is presented from physical test procedures involving sliding tests to establish wear mechanisms and friction coefficients within critical components. Hydrocarbon refrigerant R600a is compared with hydroflourocarbon R134a using aluminium on steel samples within a novel pressurised micro-friction test rig. The refrigerant R600a is tested for its influence upon the tribological performance of mineral oil (MO) and poly-ol-ester (POE) lubricant, whilst an R134a/POE charge combination is used as a benchmark. Although wear rates were significantly greater for samples utilising POE lubricants than for MO, the friction coefficients were much lower.  相似文献   

11.
建立了二维双粗糙体分形表面的接触模型,在固定滑动速度工况下考虑材料的磨损失效,针对是否考虑接触过程中的黏着因素,动态探讨了粗糙体在滑动过程中的摩擦磨损变化情况。运用有限元方法对滑动过程的摩擦磨损进行模拟仿真,得出考虑黏着因素的界面剪切强度τ=σy/3(σy为材料的屈服应力)时的摩擦因数平均值为0.48;对滑动过程是否考虑黏着因素的磨损率及振动情况进行分析比较,引入快速傅里叶函数对摩擦振动进行变换得到功率谱,结果发现,考虑黏着因素的情况下,相应的磨损率较大,功率谱低频成分较多,振动相对比较平缓,所需要的能量也相应比较大。将模拟仿真结果与实验进行比较,验证了模拟仿真的合理性,也加深了对摩擦磨损过程物理图像的理解。  相似文献   

12.
针对精密下料中存在的圆形锤头棒料摩擦副磨损严重问题,借助WTM-2E型可控气氛摩擦磨损试验仪,研究了不同转速和不同质量分数纳米MoS2添加剂下的GCr15钢块45钢柱摩擦副的摩擦磨损性能。结果表明:随着上摩擦副(45钢柱)的转速增加,磨损行程变长,摩擦因数和磨损量呈减小趋势,磨损表面形态由黏着磨损转变为磨粒磨损。采用声发射技术对摩擦副表面磨损状态进行实时监测,定量确定出质量分数为0.5%的纳米MoS2添加剂的减摩抗磨效果最佳。  相似文献   

13.
R. Kaneko  S. Umemura  M. Hirano  Y. Andoh  T. Miyamoto  S. Fukui 《Wear》1996,200(1-2):296-304
Sliders having very small mass (less than 10 mg) are beginning to be used in magnetic recording devices and very light contacting loads (less than 1 μN) are expected to be used in ultrahigh-density recording devices using the point-recording technique. These newer devices will require wear rates that are virtually zero. The wear on such sliding surfaces is primarily due to the surface interaction forces rather than the load. The ultimate goal of microtribology is to create practical zero-wear devices with very small mass and very light load. Computer simulation of molecular dynamics is used to trace the movement of each atom in sliding surfaces and of each molecule in lubricant films, New tools, such as scanning probe microscopes, are being used to evaluate sliding surfaces and lubricant films. Experimental studies of microwear processes on solid surfaces and of lubrication using very thin lubricant films have recently begun. Microtribology is an important technology for development of new microdevices, and also an important science for understanding the origin of friction and wear. Close cooperation between scientists and engineers is necessary. However, as we have very little of the knowledge needed for microtribology, we must obtain much more data.  相似文献   

14.
It has already been known for many years that the use of some extreme-pressure (EP), antiwear or friction modifier (FM) additives in mineral oils can produce different kind of boundary or chemical reaction films on sliding contact surfaces of some kinds of steel in boundary lubrication conditions. Using a sliding ball-on-disc configuration lubricated with some kinds of EP or FM, the wear scars on the balls can always reach the same limit size at a specified applied load and sliding velocity. From the fact that the limit sizes of wear scars decrease as sliding speed is increased or applied load is decreased, the load carrying ability of a chemical film can be obtained by extrapolating the data to the condition of zero sliding speed and is so defined that if the contact pressure is greater than this load carrying ability, the contact surfaces will continuously be worn; if the contact pressure is smaller than it, no more wear will occur on the surfaces. Based on this load carrying ability, the hydrodynamic effect of sliding pairs can also be identified. Therefore, the limit size of wear scar at specified sliding speed and applied load can also be predicted in a mixed lubrication condition.  相似文献   

15.
在UMT-2微摩擦试验机上,对单晶硅片进行了干摩擦和水润滑两种状态下的摩擦磨损试验,分析讨论了载荷和滑动速度对单晶硅片的摩擦因数和磨损率的影响规律;运用扫描电子显微镜,观察和分析了其磨损表面形貌。结果表明:干摩擦条件下的磨损机理主要表现为黏着磨损,水润滑条件下的磨损机理主要表现为机械控制化学作用下的原子/分子去除过程;水润滑条件下的摩擦因数和磨损量均较小,最小磨损率仅为10μm3/s;在水润滑条件下,载荷和滑动速度达到一定值时,硅片表面将发生摩擦化学反应,生成具有润滑作用的Si(OH)4膜,即机械作用在一定条件下对化学反应具有促进作用。  相似文献   

16.
Many kinds of additives are generally added to engine lubricants to improve performance. These chemical additives are harmful to both humans and the environment. For this reason, the research trend in the lubricant industry is to reduce the use of chemical additives in engine oils. Carbon materials like nanodiamonds are candidates among many physical additives. Nanodiamond particles are round, very hard, chemically stable, and highly heat conductible. In this research, nanodiamond particles were uniformly dispersed in marine engine lubricants. A matrix synthesis method was used for dispersion with various concentrations. Friction and wear tests were performed to measure the friction and wear amounts, and scuffing tests were performed. The friction coefficients were decreased with the addition of nanodiamond particles. Due to their octagonal and almost spherical shape, the particles could act as rolling contact elements between two lubricated sliding surfaces. In addition, it was found that there was a proper concentration of nanodiamond to minimize the wear amounts, which was 0.3 wt%. From the scanning electron microscopy (SEM) analysis many agglomerated particles were found on the sliding surfaces with a high concentration of particles over 0.3%. The excessive amount of nanodiamonds acted as abrasive debris and ploughed the contact surfaces. Finally, as the concentration of nanodiamonds increased, the scuffing life increased due to a reduction in friction, and the rate of temperature increase was reduced due to the high heat conductivity of nanodiamonds.  相似文献   

17.
Bronze–graphite composite was prepared using powder metallurgy. The friction and wear behaviors of the resulting composites in dry- and water-lubricated sliding against a stainless steel were comparatively investigated on an MM-200 friction and wear tester in a ring-on-block contact configuration. The wear mechanisms of the bronze–graphite composite were discussed based on examination of the worn surface morphologies of both the composite block and the stainless steel ring by means of scanning electron microscopy equipped with an energy dispersion spectrometry and on determination of some typical elements on the worn surfaces by means of X-ray photoelectron spectroscopy. It was found that the friction coefficient was higher under water lubrication than that under dry sliding and it showed margined change with increasing load under the both sliding conditions. A considerably decreased wear rate of the bronze–graphite composite was registered under water-lubricated sliding than under dry sliding, though it rose significantly at a relatively higher load. This was attributed to the hindered transfer of the composite onto the counterpart steel surface under water-lubricated sliding and the cooling effect of the water as a lubricant, while its stronger transfer onto the steel surface accounted for its higher wear rate under dry sliding. Thus, the bronze–graphite composite with much better wear-resistance under water-lubricated sliding than under dry sliding against the stainless steel could be a potential candidate as the tribo-material in aqueous environment.  相似文献   

18.
Although earlier investigations on the tribological behaviour of amcrphous hydrogenated carbon (AHC) films in sliding contact with steel showed encouraging results, four open issues were identified. They were: (a) dependence of friction and wear on humidity (i.e., the friction coefficient and the wear increased with humidity), (b) limitations on film thickness (i.e., films greater than 2 μm thick delaminated due to large compressive stress), (c) deposition of films on substrates other than silicon and (d) lubricant compatibility (i.e., formation of lubricant-derived antiwear films on AHC film surfaces). Steps were taken to address some of these open issues by incorporating silicon in AHC films. Friction and wear tests were conducted on AHC films containing various amounts of silicon. Incorporation of silicon in AHC films rendered the friction coefficients and the wear of a steel counterface insensitive to moisture. Silicon incorporation in AHC films also significantly reduced compressive stress. This allowed deposition of 10 μm thick films. These effects were achieved without any compromise with the friction coefficient and the film wear if the amount of silicon in the film was kept within a certain concentration range. In addition, silicon-containing AHC films were thermally more stable than silicon-free films. Experiments conducted with two lubricants resulted in significantly lower wear of the silicon-free AHC films than that obtained for unlubricated sliding. Similar friction coefficients were obtained for AHC film/steel and steel/steel combinations in lubricated sliding.  相似文献   

19.
采用销-盘式摩擦磨损试验机在水润滑条件下对3Y—TZP/(Mg,Y)-PSZ陶瓷摩擦副的磨损性能进行了试验研究。结果表明,3Y—TZP陶瓷的磨损率随着载荷和滑行速度的增加而增大。在低载低速下3Y—TZP陶瓷发生的是微量磨损,其磨损过程相当于抛光;随着载荷与滑动速度的增加,发生的是轻微磨损,相应的磨损机制为塑性变形和微犁削。在高载荷条件下发生了严重磨损,磨损的主要机制是表面断裂。  相似文献   

20.
Thin hard coatings on metal or ceramic surfaces offer a large spectrum of improvements of the friction and/or wear behaviour of tribosystems. The development of coatings and the tailoring of their properties require test methods providing information about their friction and wear behaviour. A new wear test standard (ASTM) is under development for the evaluation of friction and wear quantities for sliding motions using the reciprocating sliding mode. The applicability of this test method to coated specimens was checked by testing uncoated and coated steel specimens in contact with alumina balls, whereby lower loads were used than in the ASTM proposal for bulk materials. Additionally, the influence of the relative humidity of the surrounding air at room temperature on friction and wear results was examined.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号