首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Reinforcement of interfacial adhesion between syndiotactic polypropylene (SPP) and fibrous pure cellulose (FC) was performed by the FC silanizations with 3‐aminopropyltrimethoxysilane (APTMS), with hexyltrimethoxysilane (HTMS) and by an addition of a SPP grafted with dimethyl itaconate (SPP‐g‐DMI: number‐average molecular weight = 3.3 × 104, DMI cont. = 0.11 wt %), respectively. The adhesion and the morphology were improved by them, respectively. However, their behavior was considerably different. The hexyl group in the HTMS converted the FC surface into hydrophobicity, leading to the hindrance of the interhydrogen bonding in the FC. The silanized FC was embrittled with the increase of the degree of the silanization. In the case of the APTMS, the inter hydrogen bonding was kept because of the existence of the amino group. Whereas, the SPP‐g‐DMI was unable to penetrate into the cellulose because of its higher molecules, and the interhydrogen bonding was not hindered. The keeping the inter hydrogen bonding was important for the reinforcement of the tensile properties such as Young's modulus and tensile strength in the composite. Furthermore, the interfacial adhesion between the SPP and holocellulose (HC) was studied as well as the SPP/FC. Although the tensile properties were slightly improved by the APTMS silanization and by the addition of the SPP‐g‐DMI, respectively, the reactivity of the HC was much less than that of the FC. © 2011 Wiley Periodicals, Inc. J Appl Polym Sci, 2011  相似文献   

2.
To improve interaction between syndiotactic polypropylene (SPP) and fibrous cellulose (FC), effects of chemical structure of silane coupling agent on the reactivity for the surface hydroxyl group on the FC were studied by X‐ray photoelectron spectroscopy (XPS) measurement. Among the three kinds of the silane coupling agent, the 3‐aminopropyltrimethoxysilane (APTMS) showed the highest reactivity with the surface hydroxyl group on the FC, and the linear silane compound with methoxyl group was found to be suitable for the reaction. Although the morphology of the SPP/FC composite is hardly affected by the difference in the kinds of the silane coupling agent, the tensile properties were considerably different. In particular, in the case of using higher silane coupling agent solution (over 3 wt %), the chemical structure of silane coupling agent certainly affected the tensile properties of the SPP/silanized FC composite. It was found that the tensile properties were distinctly affected by the reactivity between the surface hydroxyl group on FC and the silane coupling agent. © 2010 Wiley Periodicals, Inc. J Appl Polym Sci, 2011  相似文献   

3.
To improve interactions between fibrous cellulose (FC) and polypropylene (PP), oxidatively degraded polypropylene (DgPP) and maleated polypropylene (MAPP) were studied as compatibilizers. Both compatibilizers had the same mechanism, using esterification between the OH group in FC and the reactive (γ‐lactone, acid, and maleic anhydride) groups in the compatibilizers. However, the adhesion style with the ester bond was considerably different because of the arrangements of the reactive groups. DgPP had reactive groups at the polymer chain end, and the tensile behavior of the FC/PP/DgPP composite exhibited comparatively ductile behavior. However, MAPP had inner reactive groups, and the tensile behavior of the FC/PP/MAPP composite was quite brittle. Observation of these fracture surfaces suggested that the adhesion performance of the interface between FC and PP was strongly influenced by the arrangements of the reactive group. In addition, the performance was influenced by the molecular weight of DgPP and by the content of maleic anhydride groups in MAPP. © 2008 Wiley Periodicals, Inc. J Appl Polym Sci, 2009  相似文献   

4.
The ball milling of cellulose and maleic anhydride grafted polypropylene (MAPP) induced the formation of ester bonds between OH groups of cellulose and maleic anhydride groups of MAPP, in marked contrast to the melt mixing of the original cellulose and MAPP, through which the esterification was hardly observed. This esterification was hardly dependent on the chemical structure of MAPP. In agreement with the enhanced interfacial adhesion due to the formation of ester bonds, a composite prepared via ball milling revealed an improvement in the tensile strength with respect to a melt‐mixed composite. © 2003 Wiley Periodicals, Inc. J Appl Polym Sci 91: 1703–1709, 2004  相似文献   

5.
Composites consisting of a polypropylene (PP) and highly crystalline cellulosic microfibers were prepared by melting mixing with the maleic anhydride grafted polypropylene (MAPP) as a compatibilizer. The results show that even with addition of a small amount of MAPP, the mechanical properties of the composites improved dramatically. The improvement is attributed to stronger interfacial adhesion caused by esterification between anhydride groups of MAPP and hydroxyl groups of cellulose, although the number of the ester bonds is too few to be detected by FT‐IR spectroscopy. It was also found that tensile strength and Young's modulus increased with the increasing MAPP contents in the composites, and the optimum MAPP content is about 10 wt% for the composite with cellulose content of 30 wt%. SEM indicated that the interfacial adhesion between cellulose fibers and PP improved in MAPP‐containing composites. The DSC results showed that MAPP has little effect on melting and crystallization temperatures of PP in the composites. POLYM. COMPOS., 26:448–453, 2005. © 2005 Society of Plastics Engineers  相似文献   

6.
Kenaf fiber (KF) reinforced recycled polypropylene (RPP) composites were produced by melt cast method. To improve interfacial adhesion between fiber and RPP matrix, fiber surface modification was carried out by means of ultrasound treatment. Maleic anhydride grafted polypropylene (MAPP) was used as a coupling agent. Composites were examined by mechanical test, melt flow indexing test, scanning electron microscopy, thermogravimetric analysis (TGA), and differential scanning calorimetry (DSC). Water uptake analysis and accelerated weathering test were carried out to find the suitability of the composites in outdoor application. Among the raw fiber contents ranging 10?50 wt % in the composites, the maximum tensile strength (TS) was observed at 40 wt % KF loading without using MAPP. Treated KF‐based composite with MAPP promotes this maximum TS value, which is 57% higher than that of raw KF‐based composite. TGA and DSC analyses exhibit an enhancement of thermal stability in treated KF‐reinforced RPP composites with MAPP. Incorporation of MAPP in the composites shows higher activation energy, suggesting improved interfacial bonding between fibers and matrix. Response surface method was employed to demonstrate the optimal treatment parameters for TS, showing excellent agreement with the observed values. © 2012 Wiley Periodicals, Inc. J. Appl. Polym. Sci., 2013  相似文献   

7.
Effects of the addition of poly(ethylene oxide) (PEO) on the tensile properties of a polypropylene (PP)/fibrous cellulose (FC) composite were studied. PEO was incompatible with the PP matrix, and a PP/PEO blend showed a sea‐island morphology. However, the existence of the PEO phase hardly impaired the ductility of PP, leading to a strain constraint relaxation resulting from void formation in the phase. The tensile behavior of PP/PEO was little affected by the content (until 10 wt %) or molecular weight of PEO. The results suggested that the PEO phase was able to be deformed in a slit‐like shape and had no interaction with the PP matrix. Effects of PEO on the morphology and tensile and fracture behavior of the PP/FC composite with maleated polypropylene (MAPP) as a compatibilizer critically depended on the preparation method. In the case of the addition of PEO to PP/FC/MAPP, increases in the strain and fracture energy were observed in comparison with PP/FC. In the case of the addition of FC/PEO to PP/MAPP, although the obtained composite showed a lower Young's modulus and tensile strength in comparison with PP/FC, the strain and fracture energy were considerably increased by the existence of the PEO layer coating the FC. © 2009 Wiley Periodicals, Inc. J Appl Polym Sci, 2009  相似文献   

8.
In this work, the additive effects of the poly(ethylene oxide) (PEO) on the Young's moduli of two kinds of polypropylene (PP)/fibrous cellulose (FC) composite were studied using the Kerner–Nielsen equation. In the case of the PP/maleated PP (MAPP)/FC + PEO composite, all the values of the moduli with the various PEO contents were in good agreement with the theoretical values obtained from the Kerner–Nielsen equation. Whereas the moduli of the PEO/FC + PP/MAPP composite followed the Kerner–Nielsen equation about 6 vol % of the PEO content and then unexpectedly deviated. In the scanning electron microscopy (SEM) observation, the PP/MAPP/FC + PEO composite was found to have a sea‐island morphology corresponding to the PP/MAPP/FC matrix and the PEO phase. This morphology had been unchanged against the increase of the PEO content. Whereas in the case of the PEO/FC + PP/MAPP composite, the SEM micrographs showed that that the interface between the FC and the PP became worse with the increase of the PEO content, indicating that the formation of the PP/MAPP/FC matrix was blocked by the excess PEO. The deviation of the Young's moduli from the Kerner–Nielsen equation was due to the blocking of the PEO. It was found that the adequate combination of the PEO and the MAPP was able to supply the increase of the toughness of the PP/FC composite by investigating the dependence of the PEO/FC + PP/MAPP composite on the MAPP content. © 2009 Wiley Periodicals, Inc. J Appl Polym Sci, 2009  相似文献   

9.
Residual softwood sawdust was pretreated by a steam‐explosion technique. It was used as a natural filler in polypropylene (PP)‐based composites. Dynamic mechanical analysis and tensile properties of these materials were studied. The influence of filler loading, steam‐explosion severity, and coating the fiber with a functionalized compatibilizer, such as maleic anhydryde polypropylene (MAPP), on the mechanical behavior of the composite was evaluated. The results were analyzed in relation with scanning electron microscopy observations, and surface energy (dispersive and polar components) and apparent specific area measurements. Experimental data indicate a better compatibility between MAPP‐coated fiber and PP with respect to the untreated one. The coating treatment of the softwood fiber was found to promote interfacial adhesion between both components, and to enhance the tensile properties of the resulting composite. This reinforcing effect was well predicted from theoretical calculations based on a mean field approach (Halpin‐Kardos model). The steam‐explosion pretreatment severity increased the surface energy and apparent specific surface, and resulted in a loss of the fiber entirety. The sorption behavior of these composite materials was also performed. It was found that the composites absorb more water, as the filler content is higher. MAPP coating provided protection from water uptake in the interphase region. © 1999 John Wiley & Sons, Inc. J Appl Polym Sci 74: 1962–1977, 1999  相似文献   

10.
Kudzu fiber‐reinforced polypropylene composites were prepared, and their mechanical and thermal properties were determined. To enhance the adhesion between the kudzu fiber and the polypropylene matrix, maleic anhydride‐grafted polypropylene (MAPP) was used as a compatibilizer. A continuous improvement in both tensile modulus and tensile strength was observed up to a MAPP concentration of 35 wt %. Increases of 24 and 54% were obtained for tensile modulus and tensile strength, respectively. Scanning electron microscopy (SEM) showed improved dispersion and adhesion with MAPP. Fourier transform infrared (FTIR) spectroscopy showed an increase in hydrogen bonding with an increase in MAPP content. Differential scanning calorimetry (DSC) analysis indicated little change in the melting temperature of the composites with changes in MAPP content. © 2002 Wiley Periodicals, Inc. J Appl Polym Sci 85: 1961–1969, 2002  相似文献   

11.
Wheat straw fiber‐polypropylene (PP) composites were prepared to investigate the effects of wheat straw fiber content (10, 20, 30, 40, and 50 wt %), fiber size (9, 28, and 35 mesh), and maleic anhydride grafted polypropylene (MAPP) concentration (1, 2, 5, and 10 wt %) on the static and dynamic mechanical properties of the wheat straw fiber‐PP composites in this study. The tensile modulus and strength of the composites increased linearly with increasing wheat straw fiber content up to 40%, whereas the elongation at break decreased dramatically to 3.78%. Compared with the composites made of the longer wheat straw fiber, the composites made of the fines (>35 mesh) had a slightly higher tensile strength of 31.2 MPa and tensile elongation of 5.39% at break. With increasing MAPP concentration, the composites showed an increase in tensile strength, and the highest tensile strength of 34.0 MPa occurred when the MAPP concentration reached 10 wt %. As wheat straw fiber content increased from 0 to 40%, the flexural modulus of the composites increased gradually from 1335 to 3437 MPa. The MAPP concentration and wheat straw fiber size distribution had no appreciable effect on the static flexural modulus of the composites. The storage flexural modulus of the composites increased with increasing wheat straw fiber content. The scanning electron microscopy (SEM) observation on the fracture surface of the composites indicated that a high wheat straw fiber content (>30 wt %) resulted in fiber agglomeration and a reduction in interfacial bonding strength. © 2009 Wiley Periodicals, Inc. J Appl Polym Sci, 2009  相似文献   

12.
Ink‐eliminated sludge flour (IESF), waste residue from the recycling treatments of waste paper, was utilized as a new kind of filler to reinforce polypropylene (PP) in this research work. Different coupling agents, including maleated anhydride grafted PP (MAPP), stearic acid (SA), and titanate (NDZ‐101), were used to increase the compatibility between IESF and PP. By using different measurements, the microstructure, morphology, thermal behaviors, and mechanical properties of the IESF/PP composites were investigated in detail. It was found that IESF, as a nucleation agent, not only induced the crystallization orientation of PP but also accelerate the crystallization rate of PP. Just as indicated in the experiments, the presence of IESF has shown the advantages of increasing the dimensional stability, the hardness and the flexural property, and the presence of coupling agents has a favorable effect on the improvement of dimensional stability. Moreover, the coupling agent has minor influence on the mechanical property, even causes some decrease in the impact strength. Among these three coupling agents, MAPP is found to be the best coupling agent for increasing the interfacial adhesion between IESF and PP, and the MAPP addition makes the PP composite possess the quickest crystallization rate and greatest tensile strength. © 2003 Wiley Periodicals, Inc. J Appl Polym Sci 89: 513–520, 2003  相似文献   

13.
Binary composites of high‐crystalline fibrous cellulose with polypropylene (PP) or maleic anhydride‐grafted polypropylene (MAPP) were prepared by melt‐mixing with different contents of cellulose from 0 to 60 wt %. Ternary composites of cellulose with PP and MAPP were also prepared to investigate the effects of MAPP as a compatibilizer between cellulose and PP. Scanning electron microscopy revealed that the addition of MAPP generates strong interactions between a PP matrix and cellulose fibers: All cellulose fibers are encapsulated by layers of the matrix and connected tightly within the matrix. Thus, the tensile strength and Young's modulus of MAPP‐containing composites increase with an increase in MAPP and cellulose content, in contrast to the decrease in tensile strength of a PP‐based binary composite with an increase in cellulose. Cellulose fibers act as a nucleating agent for the crystallization of PP, which is promoted by the addition of MAPP through an increase of the crystallization temperature of PP in the composite. Accordingly, both cellulose and MAPP facilitate the thermooxidative stability of PP composites in the following order: MAPP/cellulose > PP/MAPP/cellulose > PP/cellulose > PP. Relative water absorption increases with an increase in cellulose content, decreasing with the addition of MAPP. MAPP‐containing cellulose composites have high potential for applications as environmentally friendly materials. © 2002 Wiley Periodicals, Inc. J Appl Polym Sci 87: 337–345, 2003  相似文献   

14.
《Polymer Composites》2017,38(8):1749-1755
Wood flour (WF)‐filled composites based on a polypropylene (PP)/recycled polyethylene terephthalate (r‐PET) matrix were prepared using two‐step extrusion. Maleic anhydride grafted polypropylene (MAPP) was added to improve the compatibility between polymer matrices and WF. The effects of filler and MAPP compatibilization on the water absorption, mechanical properties, and morphological features of PP/r‐PET/WF composites were investigated. The addition of MAPP significantly improved mechanical properties such as tensile strength, flexural strength, tensile modulus, and flexural modulus compared with uncompatibilized composites, but decreased elongation at break. Scanning electron microscopic images of fracture surface specimens revealed better interfacial interaction between WF and polymer matrix for MAPP‐compatibilized PP/r‐PET/WF composites. MAPP‐compatibilized PP/r‐PET/WF composites also showed reduced water absorption due to improved interfacial bonding, which limited the amount of absorbable water molecules. These results indicated that MAPP acts as an effective compatibilizer in PP/r‐PET/WF composites. POLYM. COMPOS., 38:1749–1755, 2017. © 2015 Society of Plastics Engineers  相似文献   

15.
Hydroxyl functionalized multiwalled carbon nanotubes (H‐MWNTs) were silanized using 3‐aminopropyltriethoxysilane (APTES) in order to improve the dispersion and interfacial interaction in composites. MWNT/polycarbonate (PC) composites filled with H‐MWNTs and silanized MWNTs (S‐MWNTs) were fabricated by melt mixing and injection molding. Fourier transform infrared spectrometry (FTIR) and energy dispersion X‐ray spectroscopy (EDS) were employed to prove the presence of APTES on the surface of S‐MWNTs. In addition, thermogravimetric analysis (TGA) was used to evaluate the relative amount of introduced APTES. The microstructure and mechanical property of both composites were investigated by scanning electron microscopy (SEM), transmission electron microscope (TEM), tensile test and dynamic mechanical analysis (DMA). The SEM and TEM images showed that S‐MWNT/PC composites had better dispersion and interfacial adhesion than H‐MWNT/PC composites. A reinforcing and toughening effect on tensile behavior of composites was obtained after silane functionalization. The storage modulus of composites increased markedly as a function of MWNTs content, especially for the composites with S‐MWNTs. In summary, the silanization can improve the dispersion of MWNTs and the interfacial adhesion between MWNTs and PC so as to enhance the mechanical properties of composites. POLYM. COMPOS., 37:1914–1923, 2016. © 2015 Society of Plastics Engineers  相似文献   

16.
A composite of highly crystalline cellulose was synthesized via a melt‐mixing method with maleic anhydride (MA)‐grafted polypropylene (PP), MAPP, which was prepared by melt‐mixing PP with 0.25–8.0 phr (part of reagent per hundred parts of PP) of MA, and the morphology and tensile properties were examined with respect to the interfacial interactions of MAPP and cellulose. The graft degree (Gd) of MAPP increases with an increase in the initial MA amount up to 2.5 phr, beyond which it decreases because of the remaining of more free MA monomers and/or the formation of more oligomers remaining in the matrix. The morphology and tensile properties of the composite are affected strongly by Gd as well as the presence of the free MA in the matrix. For the MAPP without any free MA, even the Gd value as small as 0.25–0.5 wt % yields a maximal tensile strength. The existence of free MA monomers in the MAPP decreases the tensile strength, probably because of interrupting the interactions of the grafted MA groups with the OH groups of cellulose. The tensile properties of the composite correlate with the interfacial adhesion as well as the dispersion of cellulose microfibers in the matrix, both of which are determined by the interactions of the OH groups on cellulose with the grafted MA groups. © 2006 Wiley Periodicals, Inc. J Appl Polym Sci 102: 3830–3841, 2006  相似文献   

17.
Polypropylene (PP)/montmorillonite (MMT) nanocomposites were prepared by compounding maleic anhydride‐g‐polypropylene (MAPP) with MMT modified with α,ω‐diaminododecane. Structural characterization confirmed the formation of characteristic amide linkages and the intercalation of MAPP between the silicate layers. In particular, X‐ray diffraction patterns of the modified clay and MAPP/MMT composites showed 001 basal spacing enlargement as much as 1.49 nm. Thermogravimetric analysis revealed that the thermal decomposition of the composite took place at a slightly higher temperature than that of MAPP. The heat of fusion of the MAPP phase decreased, indicating that the crystallization of MAPP was suppressed by the clay layers. PP/MAPP/MMT composites showed a 20–35% higher tensile modulus and tensile strength compared to those corresponding to PP/MAPP. However, the elongation at break decreased drastically, even when the content of MMT was as low as 1.25–5 wt %. The relatively short chain length and loop structure of MAPP bound to the clay layers made the penetration of MAPP molecules into the PP homopolymer phase implausible and is thought to be responsible for the decreased elongation at break. © 2004 Wiley Periodicals, Inc. J Appl Polym Sci 95: 307–311, 2005  相似文献   

18.
Polypropylene (PP) composites filled with wood flour (WF) were prepared with a twin‐screw extruder and an injection‐molding machine. Three types of ecologically friendly flame retardants (FRs) based on ammonium polyphosphate were used to improve the FR properties of the composites. The flame retardancy of the PP/WF composites was characterized with thermogravimetric analysis (TGA), vertical burn testing (UL94‐V), and limiting oxygen index (LOI) measurements. The TGA data showed that all three types of FRs could enhance the thermal stability of the PP/WF/FR systems at high temperatures and effectively increase the char residue formation. The FRs could effectively reduce the flammability of the PP/WF/FR composites by achieving V‐0 UL94‐V classification. The increased LOI also showed that the flammability of the PP/WF/FR composites was reduced with the addition of FRs. The mechanical property study revealed that, with the incorporation of FRs, the tensile strength and flexural strength were decreased, but the tensile and flexural moduli were increased in all cases. The presence of maleic anhydride grafted polypropylene (MAPP) resulted in an improvement of the filler–matrix bonding between the WF/intumescent FR and PP, and this consequently enhanced the overall mechanical properties of the composites. Morphological studies carried out with scanning electron microscopy revealed clear evidence that the adhesion at the interfacial region was enhanced with the addition of MAPP to the PP/WF/FR composites. © 2010 Wiley Periodicals, Inc. J Appl Polym Sci, 2010  相似文献   

19.
Jute‐fibers‐reinforced thermoplastic composites are widely used in the automobile, packaging, and electronic industries because of their various advantages such as low cost, ease of recycling, and biodegradability. However, the applications of these kinds of composites are limited because of their unsatisfactory mechanical properties, which are caused by the poor interfacial compatibility between jute fibers and the thermoplastic matrix. In this work, four methods, including (i) alkali treatment, (ii) alkali and silane treatment, (iii) alkali and (maleic anhydride)‐polypropylene (MAPP) treatment, and (iv) alkali, silane, and MAPP treatment (ASMT) were used to treat jute fibers and improve the interfacial adhesion of jute‐fiber‐reinforced recycled polypropylene composites (JRPCS). The mechanical properties and impact fracture surfaces of the composites were observed, and their fracture mechanism was analyzed. The results showed that ASMT composites possessed the optimum comprehensive mechanical properties. When the weight fraction of jute fibers was 15%, the tensile strength and impact toughness were increased by 46 and 36%, respectively, compared to those of untreated composites. The strongest interfacial adhesion between jute fibers and recycled polypropylene was obtained for ASMT composites. The fracture styles of this kind of composite included fiber breakage, fiber pull‐out, and interfacial debonding. J. VINYL ADDIT. TECHNOL., 2010. © 2010 Society of Plastics Engineers.  相似文献   

20.
Enhancement of tensile strength, impact strength, and flexural strength of polypropylene/short glass fiber composites by treating the glass fibers with coupling agent, mixing with maleated polypropylene (MPP) for compatibilization and adhesion, and with nucleating agent for improvement of polypropylene crystallization was studied. The results showed that both the silane coupling agent and MPP enhance tensile strength, impact strength, and flexural strength. In the absence of MPP, the effect of silane coupling agent on the mechanical properties of the composites decreases in the following order: alkyl trimethoxy silane (WD‐10) > γ‐methacryloxypropyl trimethoxysilane (WD‐70) > N‐(β‐aminoethyl)‐γ‐aminopropyl trimethoxysilane (WD‐52), whereas in the presence of MPP, the order changes as follows: WD‐70 > WD‐10 > WD‐52. When the glass fibers were treated with WD‐52, 4,4‐diamino‐diphenylmethane bismaleimide (BMI) can further enhance the mechanical properties of the composite. The three kinds of strengths increase with MPP amount to maximum values at 5% MPP. As a nucleating agent, adipic acid is better than disodium phthalate in improving the mechanical properties, except for the notched impact strength. Wide‐angle X‐ray diffraction showed that the adipic acid is an α‐type nucleating agent, whereas disodium phthalate is a β‐type nucleating agent. Blending with styrene–butadiene rubber can somewhat improve the notched impact strength of the composites, but severely lowers the tensile strength and bending strength. Scanning electron micrographs of the broken surface of the composite showed greater interfacial adhesion between the glass fibers and polypropylene in the modified composite than that without modification. © 2005 Wiley Periodicals, Inc. J Appl Polym Sci 96: 1414–1420, 2005  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号