首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 802 毫秒
1.
To improve the robustness and reliability of wireless transmissions, two complementary link adaptation techniques are employed: adaptive modulation and coding (AMC) at the physical layer and hybrid automatic retransmission request (HARQ) at the medium access control layer. Because of their effectiveness in combating errors induced by the wireless channel, AMC and HARQ are now integral components of most emerging broadband wireless system standards, for example, LTE and WiMAX. Spectral efficiency (SE) as measured in bit per second per Hertz is one important parameter used to characterize a wireless system for comparison between different systems or between different configurations of the same system. This work provides a holistic approach of cross‐layer optimizations with the intent of maximizing SE by combining AMC and HARQ. It formulates closed‐form equations for calculating the average SE for wireless systems with the Rayleigh fading channel model. A new online algorithm is developed to optimize SE for both Rayleigh and non‐Rayleigh fading channel. Simulations using proven LTE model are performed to compare SE obtained from closed‐form equations and the developed algorithm for different system configurations. With the developed algorithm to determine how many retransmissions required in addition to the initial transmission in advance depending on the current wireless channel condition, the latency can be reduced up to 24 ms when sending the initial transmission and all of its retransmissions sooner than waiting for retransmission requests as is done previously. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

2.
Adaptive modulation and MIMO coding for broadband wireless datanetworks   总被引:1,自引:0,他引:1  
Link adaptation techniques, where the modulation, coding rate, and/or other signal transmission parameters are dynamically adapted to the changing channel conditions, have emerged as powerful tools for increasing the data rate and spectral efficiency of wireless data-centric networks. While there has been significant progress on understanding the theoretical aspects of time adaptation in LA protocols, new challenges surface when dynamic transmission techniques are employed in broadband wireless networks with multiple signaling dimensions. Those additional dimensions are mainly frequency, especially in multicarrier systems, and space in multiple-antenna systems, particularly multiarray multiple-input multiple-output communication systems. We give an overview of the challenges and promises of link adaptation in future broadband wireless networks. We suggest guidelines to help in the design of robust, complexity/cost-effective algorithms for these future wireless networks  相似文献   

3.
IEEE 802.11n is a high‐speed wireless broadband local area networking standard. IEEE 802.11n‐based devices are using some kind of adaptive modulation‐coding (AMC) scheme to adjust its transmission rate according to the radio channel condition. In these devices, however, the concept of guard interval adaptation is not been considered. Normally, orthogonal frequency division multiplexing (OFDM) technology‐based systems are using the guard interval much greater than the length of the channel impulse response. However, many previous works have shown that the choice of the larger guard interval is inefficient in terms of achievable throughput. IEEE802.11n supports using two guard intervals (short = 400 ns or long = 800 ns). Indeed, the shorter guard interval evidently results in intersymbol interference (ISI) and intercarrier interference (ICI), but the gain offered by shortened guard interval may exceed the loss caused by interference. In this paper, we propose a novel but simple solution for the guard interval adaptation joint with an adaptive modulation‐coding scheme to optimize the throughput performance of a wireless local area network (WLAN) system. This paper aims to analyze the effect of joint adaptive modulation‐coding and the guard interval (JAMCGI) algorithm on the WLAN system under bit‐error‐rate (BER) constraints. Simulation results and their analysis show a significant increase in the throughput performance of the WLAN system with our proposed algorithm.  相似文献   

4.
Traditional wireless communications only utilize fixed-rate multicast and broadcast. In other words, only the most robust modulation and coding scheme can be applied for data transmission. Such a scheme fails to sufficiently exploit the potential gains of multicast and broadcast, resulting in bandwidth waste. To overcome such a problem, investigating the rate adaptation of multicast and broadcast wireless systems is the primary task. Unlike the traditional wireless systems, this paper presents an analytical model with rate adaptation for both multicast and broadcast. Adaptive modulation and coding are applied to achieve rate adaptation. We construct a stochastic model by using Finite State Markov chains for the multicast broadcast system modeling. The model’s outputs are shown to approximate to the results of our system level simulations. The model derives the performance of rate adaptation in multicast and broadcast. With the deduced modeling results, we can predict the system throughput providing the channel states, and the modulation and coding schemes variations.  相似文献   

5.
Link Adaptation (LA) has been proposed in the literature as a means of increasing the throughput obtained by each user in wireless communication systems. Due to its significant simplicity, LA has even been adopted as the standard adaptive coding technique for the next generation mobile communication system known as EDGE. In this paper, we present a novel link adaptation technique, valid for use in the case of Rayleigh fading wireless channels. The new technique is based on the blind channel estimation algorithm usually used for combating inter-symbol interference (ISI). The algorithm is presented and its efficiency in providing the maximum available throughput is illustrated by means of computer simulations.  相似文献   

6.
Link Adaptation (LA) has been proposed in the literature as a means of increasing the throughput obtained by each user in wireless communication systems. Due to its significant simplicity, LA has even been adopted as the standard adaptive coding technique for the next generation mobile communication system known as EDGE. In this paper, we present a novel link adaptation technique, valid for use in the case of Rayleigh fading wireless channels. The new technique is based on the blind channel estimation algorithm usually used for combating inter-symbol interference (ISI). The algorithm is presented and its efficiency in providing the maximum available throughput is illustrated by means of computer simulations.  相似文献   

7.
The paper explores the use of residue number systems (RNS) to incorporate incremental redundancy (IR) and link adaptation (LA) in wireless communication systems. This also explores the use of RNS to increase the transmission data rate and to enhance the privacy of a wireless network. By exploiting IR and LA further, one can design an appropriate coding scheme for transmission at the currently experienced SNR level. The proposed method is implemented in existing wireless local area network (WLAN) standards and simulated extensively to find its suitability. The results of simulation studies are discussed in details.  相似文献   

8.
We consider efficiently transmitting video over a hybrid wireless/wire-line network by optimally allocating resources across multiple protocol layers. Specifically, we present a framework of joint source-channel coding and power adaptation, where error resilient source coding, channel coding, and transmission power adaptation are jointly designed to optimize video quality given constraints on the total transmission energy and delay for each video frame. In particular, we consider the combination of two types of channel coding—inter-packet coding (at the transport layer) to provide protection against packet dropping in the wire-line network and intra-packet coding (at the link layer) to provide protection against bit errors in the wireless link. In both cases, we allow the coding rate to be adaptive to provide unequal error protection at both the packet and frame level. In addition to both types of channel coding, we also compensate for channel errors by adapting the transmission power used to send each packet. An efficient algorithm based on Lagrangian relaxation and the method of alternating variables is proposed to solve the resulting optimization problem. Simulation results are shown to illustrate the advantages of joint optimization across multiple layers.  相似文献   

9.
In this paper, we consider progressive image transmission over differentially space‐time coded orthogonal frequency‐division multiplexing (OFDM) systems and treat the problem as one of optimal joint source‐channel coding (JSCC) in the form of unequal error protection (UEP), as necessitated by embedded source coding (e.g., SPIHT and JPEG 2000). We adopt a product channel code structure that is proven to provide powerful error protection and employ low‐complexity decision‐feedback decoding for differentially space‐time coded OFDM without assuming channel state information. For a given SNR, the BER performance of the differentially space‐time coded OFDM system is treated as the channel condition in the JSCC/UEP design via a fast product code optimization algorithm so that the end‐to‐end quality of reconstructed images is optimized in the average minimum MSE sense. Extensive image transmission experiments show that SNR/BER improvements can be translated into quality gains in reconstructed images. Moreover, compared to another non‐coherent detection algorithm, i.e., the iterative receiver based on expectation‐maximization algorithm for the space‐time coded OFDM systems, differentially space‐time coded OFDM systems suffer some quality loss in reconstructed images. With the efficiency and simplicity of decision‐feedback differential decoding, differentially space‐time coded OFDM is thus a feasible modulation scheme for applications such as wireless image over mobile devices (e.g., cell phones). Copyright © 2006 John Wiley & Sons, Ltd.  相似文献   

10.
In this paper, a proposal is sketched for realizing high data rate downlinks in next‐generation Ka band low Earth orbit (LEO) Earth Observation (EO) systems. The work aims at realistically assessing the throughput advantage stemming from link adaptation strategies—embraced by most wireless and satellite communication standards—compared with non‐adaptive transmission, which is the approach followed in conventional X band EO systems. The transmission strategies examined include constant, (static and dynamic) variable, and adaptive flavors of coding and modulation, each representing a different performance/system complexity trade‐off. Practicality is pursued to the extent possible by incorporating state‐of‐the‐art orbital, ground station, spacecraft, propagation, physical layer, and system implementation characteristics. The results manifest that under particular conditions, link adaptation offers throughput improvements of up to 100% against non‐adaptive transmission schemes in Ka band LEO EO systems. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

11.
多输入多输出(Multiple-Input Multiple Output,MIMO)技术已被广泛应用于无线通信系统。由于信道中均衡、预编码、空间模式、调制和编码方案(Modulation and Coding Scheme,MCS)之间耦合的复杂性,在MIMO系统中执行链路自适应仍十分困难。通过实数分类器提出MIMO系统中的链路自适应方案来最大化频谱效率,并保持传输的可靠性。从信道状态信息(Channel State Information,CSI)中提取特征,并结合特定的代价函数选择调制和编码方案,基于最大化频谱效率的目标来选择空间模式。  相似文献   

12.
In this paper a single-input-single-output wireless data transmission system with adaptive modulation and coding over correlated fading channel is considered, where run-time power adjustment is not available. Higher layer data packets are enqueued into a finite size buffer space before being released into the time-varying wireless channel. Without fixing the physical layer error probability, the objective is to minimize the average joint packet loss rate due to both erroneous transmission and buffer overflow. Two optimization techniques are incorporated to achieve the best solution. The first is policy domain optimization that formulates the data rate adaptation design as classical Markov decision problem. The second is channel domain optimization that appropriately partitions the channel variation based on particular fading environment and carried traffic pattern. The derived policy domain analytical model can precisely map any policy design into various QoS performance metrics with finite buffer setup. We then propose a tractable suboptimization framework to produce different two-dimensional suboptimal solutions with scalable complexity-optimality tradeoff for practical implementations.  相似文献   

13.
Space-time coding is well understood for high data rate communications over wireless channels with perfect channel state information. On the other hand, channel coding for multiple transmit antennas when channel state information is unknown has only received limited attention. A new signaling scheme, named unitary space-time modulation, has been proposed for the latter case. In this paper, we consider the use of turbo coding together with unitary space-time modulation. We demonstrate that turbo coded space-time modulation systems are well suited to wireless communication systems when there is no channel state information, in the sense that the turbo coding improves the bit error rate (BER) performance of the system considerably. In particular, we observe that the turbo-coded system provides 10-15 dB coding gain at a BER of 10/sup -5/ compared to the unitary space-time modulation for various transmit and receive antenna diversity cases.  相似文献   

14.
The last decade has been characterized by an increasing demand of higher throughput and more reliable communication links for supporting multimedia applications. To this aim, the focus has been toward both broadband and broadcast solutions providing multimedia services to mobile users. In order to exploit such advanced services, ubiquitous and efficient mobile connections are required: satellite communications (SatCom), able to cover low density populated areas and to fill terrestrial coverage gaps, are a viable solution, as long as capacity is properly optimized. Waveform adaptation can be considered as one of the reference approaches for increasing the throughput and the reliability in wireless communication links. However, the large round trip time and user mobility in SatCom scenarios represent a serious challenge that limits the effectiveness of transmission parameters adaptation. In this paper, we focus on a novel state‐driven adaptive coding and modulation approach aiming to predict the most suitable modulation and coding scheme for each communication state, based on channel state estimation and a Markov propagation model. The paper introduces the concept of state estimation decision reliability and transmission reliability. Different from other approaches, the state‐driven algorithm allows to increase the system reliability by lowering the outage probability in the selected scenarios. The effectiveness of the proposed approach has been validated by resorting to numerical results after a careful parameter optimization. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

15.
Multiple-input–multiple-output orthogonal frequency-division multiplexing (MIMO-OFDM) wireless systems use link adaptation to exploit the dynamic nature of wireless environments. Link adaptation maximizes throughput while maintaining target reliability by adaptively selecting the modulation order and coding rate. Link adaptation is extremely challenging, however, due to the difficulty in predicting error rates in OFDM with binary convolutional codes, bit interleaving, MIMO processing, and real channel impairments. This paper proposes a new machine-learning framework that exploits past observations of the error rate and the associated channel-state information to predict the best modulation order and coding rate for new realizations of the channel state without modeling the input–output relationship of the wireless transceiver. Our approach is enabled through our new error-rate expression that is only parameterized by postprocessing signal-to-noise ratios (SNRs), ordered over subcarriers and spatial streams. Using ordered SNRs, we propose a low-dimensional feature set that enables machine learning to increase the accuracy of link adaptation. An IEEE 802.11n simulation study validates the application of this machine-learning framework in real channels and demonstrates the improved performance of SNR ordering as it compares with competing link-quality metrics.   相似文献   

16.
There is a plethora of recent research on high performance wireless communications using a cross‐layer approach in that adaptive modulation and coding (AMC) schemes at wireless physical layer are used for combating time varying channel fading and enhance link throughput. However, in a wireless sensor network, transmitting packets over deep fading channel can incur excessive energy consumption due to the usage of stronger forwarding error code (FEC) or more robust modulation mode. To avoid such energy inefficient transmission, a straightforward approach is to temporarily buffer packets when the channel is in deep fading, until the channel quality recovers. Unfortunately, packet buffering may lead to communication latency and buffer overflow, which, in turn, can result in severe degradation in communication performance. Specifically, to improve the buffering approach, we need to address two challenging issues: (1) how long should we buffer the packets? and (2) how to choose the optimum channel transmission threshold above which to transmit the buffered packets? In this paper, by using discrete‐time queuing model, we analyze the effects of Rayleigh fading over AMC‐based communications in a wireless sensor network. We then analytically derive the packet delivery rate and average delay. Guided by these numerical results, we can determine the most energy‐efficient operation modes under different transmission environments. Extensive simulation results have validated the analytical results, and indicates that under these modes, we can achieve as much as 40% reduction in energy dissipation. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

17.
In this study, a channel selection algorithm is proposed to enhance the transmission rate for scalable video coding (SVC) source transmission over multi-input multi-output (MIMO) wireless systems. The proposed algorithm allows each layer of SVC video to choose its appropriate channel in wireless MIMO systems based on channel state information for transmission rate enhancement. Here, this difficult problem is converted into mathematical optimization problem to improve the performance of SVC video transmission. Experimental results show that the transmission rate of the proposed method outperforms the existing scheme.  相似文献   

18.
为了提高无线通信系统的可靠性,将协作通信技术和空间分集技术都引入到传统的信道编码系统中,提出了更高质量的无线传输方法。采用全盲瑞利信道来模拟实际的无线通信环境,用自适应算法LMS和RLS分别对信道进行估计,并比较2种算法的收敛特性。理论分析和仿真均表明,在原有的仅采用信道编码技术的基础上,提出的新传输方法能使无线通信系统获得更高的可靠性。  相似文献   

19.

Adaptive communication for is one of the hottest areas of research in the telecommunication systems including wireless broadcast systems. This is primarily accomplished for sake of boosting the transmission throughput with enhanced quality of service and ideal link utilization. In adaptive communication, various radio transmission parameters like modulation symbol, code-rate and power etc. are carefully chosen according to the erratic channel state information on the link. Digital video broadcast—second generation (DVB-S2) has an inbuilt support for adaptive coding and modulation (ACM). However, power adaptation is still a necessity because of power constraint in downlink where satellite has a limited power bank. Moreover, different downlinks have distinct transmit power requirements due to diverse ambient on earth receivers like rainy, foggy, stormy and with clear sky etc., hence flat transmit power distribution among all the ground receivers may not be a good idea at all. To utilize the ACM feature in DVB-S2 and to additionally adapt power, in this paper, an adaptive modulation, coding (MODCOD) and power scheme is proposed. By investigating a fuzzy system and differential evolution algorithm, to select the set of MODCODs and optimum power vector, respectively, for the next transmission interval. From the simulation results it is apparent that the proposed scheme is promising in terms of efficient link and transmit power utilization as well as quality of service compared to the schemes in the literature with flat power distribution.

  相似文献   

20.
We consider the design of iterative receivers for space-time block-coded orthogonal frequency-division multiplexing (STBC-OFDM) systems in unknown wireless dispersive fading channels, with or without outer channel coding. First, we propose a maximum-likelihood (ML) receiver for STBC-OFDM systems based on the expectation-maximization (EM) algorithm. By assuming that the fading processes remain constant over the duration of one STBC code word and by exploiting the orthogonality property of the STBC as well as the OFDM modulation, we show that the EM-based receiver has a very low computational complexity and that the initialization of the EM receiver is based on the linear minimum mean square error (MMSE) channel estimate for both the pilot and the data transmission. Since the actual fading processes may vary within one STBC code word, we also analyze the effect of a modeling mismatch on the receiver performance and show both analytically and through simulations that the performance degradation due to such a mismatch is negligible for practical Doppler frequencies. We further propose a turbo receiver based on the maximum a posteriori-EM algorithm for STBC-OFDM systems with outer channel coding. Compared with the previous noniterative receiver employing a decision-directed linear channel estimator, the iterative receivers proposed here significantly improve the receiver performance and can approach the ML performance in typical wireless channels with very fast fading, at a reasonable computational complexity well suited for real-time implementations  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号