首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Biosorption of Acid Red 57 (AR57) on to Neurospora crassa was studied with variation of pH, contact time, biosorbent and dye concentrations and temperature to determine equilibrium and kinetic models. The AR57 biosorption was fast and equilibrium was attained within 40 min. Langmuir, Freundlich and Dubinin–Radushkevich (D–R) isotherm models were applied to experimental equilibrium data for AR57 biosorption at various temperatures. The equilibrium data fitted very well to all the equilibrium models in the studied concentration range of AR57. Maximum biosorption capacity (qmax) of AR57 on to N. crassa was 2.16 × 10?4 mol g?1 at 20 °C. The kinetics of biosorption of AR57 were analyzed and rate constants were derived. The overall biosorption process was best described by a pseudo‐second‐order kinetic model. The changes in Gibbs free energy, enthalpy and entropy of biosorption were also evaluated for the biosorption of AR57 on to N. crassa. The results indicate that the biosorption was spontaneous and exothermic in nature. Copyright © 2006 Society of Chemical Industry  相似文献   

2.
《分离科学与技术》2012,47(1):192-211
Abstract

In this study, the biosorption of Basic Blue 9 (BB9) dye from aqueous solutions onto a biomass of Euphorbia rigida was examined by means of the initial biosorbate concentration, biosorbent amount, particle size, and pH. Biosorption of BB9 onto E. rigida increases with both the initial biosorbate concentration and biosorbent amount, whereas decreases with the increasing particle size. The experimental data indicated that the biosorption isotherms are well‐described by the Langmuir equilibrium isotherm equation at 20, 30, and 40°C. Maximum biosorption capacity was 3.28×10?4 mol g?1 at 40°C. The biosorption kinetics of BB9 obeys the pseudo‐second‐order kinetic model. The thermodynamic parameters such as ΔG°, ΔH° and ΔS° were calculated to estimate the nature of biosorption. These experimental results have indicated that E. rigida has the potential to act as a biosorbent for the removal of Basic Blue 9 from aqueous solutions.  相似文献   

3.
The aim of the present study is to investigate the influence of free, carboxymethyl cellulose (CMC) immobilised, PVA–alginate immobilised, and HCl treated rice husk on the removal of Direct Red‐31 and Direct Orange‐26 dyes. The biosorption capacity of the rice husk increased with HCl treatment (67.39 and 45.34 mg/g) and decreased with PVA–alginate immobilisation (9.73 and 10.03 mg/g) as compared to the free biomass (65.56 and 45.58 mg/g) at 200 mg/L dye concentration for Direct Red‐31 and Direct Orange‐26, respectively. Equilibrium data were best described by Langmuir Type 1 for Direct Red‐31 and Direct Orange‐26 (free, CMC immobilised, PVA–alginate immobilised, and HCl treated). Best correlation coefficients for Direct Red‐31 and Direct Orange‐26 using free, CMC immobilised, PVA–alginate immobilised, and HCl treated rice husk were obtained for pseudo‐second order and Elovich kinetic models. Values of Gibbs free energy (ΔG°) and enthalpy change (ΔH°) indicated that reaction was spontaneous and endothermic in nature at the studied temperatures. FT‐IR studies showed the involvement of carbonyl, carboxyl, and amide groups in the biosorption process. SEM exhibited the morphological changes on the biosorbent surface and BET analysis to determine the surface area is also carried out.  相似文献   

4.
BACKGROUND: The removal of methylene blue from aqueous solution was studied using softstem bulrush (Scirpus tabernaemontani Gmel.) as the biosorbent. The effects of various parameters including contact time, biosorbent dosage, ionic strength and solution pH on the biosorption were investigated. RESULTS: The sorption capacity increased with an increase in biosorbent dosage and a decrease in ionic strength. The equilibrium time was found to be 240 min for full equilibration. Pseudo‐first‐order, pseudo‐second‐order, Bangham equation and intraparticle diffusion models were applied to fit the kinetic data, and the results showed that the sorption process followed the pseudo‐second‐order model. Equilibrium data conformed to Langmuir and Redlich–Peterson isotherm models, with a maximum monolayer biosorption capacity of 53.8 mg g?1 for the Langmuir isotherm at 18 °C. The value of ΔG was estimated to be ? 29.24 kJ mol?1, indicating the spontaneous nature of the biosorption. The biosorption process was strongly pH‐dependent and favourable at alkaline pH. CONCLUSION: Softstem bulrush, which is readily available and inexpensive, could be employed as a promising biosorbent for the removal of dye. Copyright © 2008 Society of Chemical Industry  相似文献   

5.
The hypothesis that the dried, ground biomass of the red marine alga Gracilaria tenuistipitata could be used for the efficient removal of lac dye from aqueous solution was assessed in this work. The effects of parameters such as initial pH, biosorbent dosage, contact time, initial dye concentration, and temperature on the biosorption capacity of the dye were investigated. Equilibrium data were analysed using Langmuir, Freundlich, and Temkin isotherm models, and the Freundlich model provided the highest coefficient of determination values. Biosorption kinetic data were successfully described with a pseudo‐second‐order model at initial dye concentrations of 50, 80, 100, and 120 mg l?1. The thermodynamic parameters of biosorption – enthalpy change (?H° = ?30.64 kJ mol?1), free energy change (?G° = 4.32 kJ mol?1 at 303 K to 7.78 kJ mol?1 at 333 K), and entropy change (?S° = ?115.38 J mol?1 K?1) – were determined. The negative value of the enthalpy change and positive values of the free energy change indicate that the biosorption process is exothermic and non‐spontaneous. The negative value of the entropy change is consistent with decreased randomness at the solid–liquid interface with dye biosorption. Attenuated total reflectance–Fourier transform infrared spectroscopic analysis confirmed the presence of lac dye on the G. tenuistipitata material. The efficiency of lac dye removal by this biomass material at 20 g l?1 and with an initial dye concentration of 50 mg l?1 in acidic solution was 71%, which indicated its potential usefulness as a new dye biosorbent.  相似文献   

6.
《分离科学与技术》2012,47(5):1221-1238
Abstract

Mercury removal from wastewater is a recognized pollution control challenge today. In the present investigation, the biosorption of Hg(II) onto the dead biomass of four different species of marine Aspergillus, prepared by alkaline treatment, was studied. Among the cultures studied, A. niger was found to be the most efficient for Hg(II) removal. The effects of initial Hg(II) concentration, contact time, pH, temperature, and biosorbent dosage on biosorption were also investigated. It was observed that biosorption equilibriums were established in about 2 h. Under the optimum conditions (pH: 3.0, Hg(II) concentration: 250 mg/L, biomass dose: 0.8 g/L, temperature: 40°C and contact time: 2 h), 40.53 mg Hg(II) was biosorbed per gram of dead biomass of A. niger. Kinetic studies based on fractional power, zero order, first order, pseudo first order, Elovich, second order, and second order rate expressions have also been carried out where the pseudo second order model exhibited best fit to experimental data. The intra‐particle diffusion study revealed that film diffusion is the rate‐limiting sorption process for Hg(II) on A. niger. The nature of the possible cell–metal ion interactions was evaluated by FTIR, SEM, and EDAX analysis. These examinations indicated the involvement of ‐OH and ‐NH2 + groups in the biosorption process present on the surface of the dead fungal biomass. Here, Hg(II) ions were deposited on the surface of the biomass as a film like structure.  相似文献   

7.
A weak acid acrylic resin was used as an adsorbent for the investigation of Basic Blue 3 (BB3) adsorption kinetics, isotherms, and thermodynamic parameters. Batch adsorption studies were carried out to evaluate the effect of pH, contact time, initial concentration (28–100 mg/g), adsorbent dose (0.05–0.3 g), and temperature (290–323 K) on the removal of BB3. The adsorption equilibrium data were analyzed by the Langmuir, Temkin, and Freundlich isotherm models, with the best fitting being the first one. The adsorption capacity (Qo) increased with increasing initial dye concentration, adsorbent dose, and temperature; the highest maximum Qo (59.53 mg/g) was obtained at 323 K. Pseudo‐first‐order and pseudo‐second‐order kinetic models and intraparticle diffusion models were used to analyze the kinetic data; good agreement between the experimental and calculated amounts of dye adsorbed at equilibrium were obtained for the pseudo‐second‐order kinetic models for the entire investigated concentrations domain. Various thermodynamic parameters, such as standard enthalpy of adsorption (ΔHo = 88.817 kJ/mol), standard entropy of adsorption (ΔSo = 0.307 kJ mol?1 K?1), and Gibbs free energy (ΔGo < 0, for all temperatures investigated), were evaluated and revealed that the adsorption process was endothermic and favorable. © 2009 Wiley Periodicals, Inc. J Appl Polym Sci, 2009  相似文献   

8.
The diffusion coefficients D0, of C.I. Direct Yellow 12, Red 2, Blue 1, and Blue 15 in aqueous NaCl solution were measured at 90°C by the diaphagm cell method. The values of D0 for Yellow 12 and Red 2 showed a salt concentration dependence and those for Blue 1 and Blue 15 were constant over the ionic strength range from 0.01 to 0.10. In the adsorption/diffusion models proposed so far for the direct dye–cellulose system, the Standing–Warwicker–Willis model was shown to be similar in principle to the Weisz–Zollinger model. The adsorption/diffusion behaviors in never-dry cellophane sheet for C.I. Direct Yellow 12 and Blue 15 were examined by the method of cylindrical film roll at 90°C. The concentration dependence of the apparent diffusion coefficient for these dyes showed an incomplete validity of both the models.  相似文献   

9.
Procion Blue H‐B (PBHB) was used as a model reactive dye for biosorption studies onto inactive/dead mycelial biomass of Panus fulvus. Process parameters like pH, contact time and temperature were optimized. pH 2, 150 min of contact time and 35 °C were found to be more favorable for maximum biosorption. Various two‐ and three‐parameter isotherms were employed to understand the biosorption process. Among the various two‐parameter isothermal models applied, the Langmuir isotherm showed the best fit and among the three‐parameter isothermal models, the Khan, Redlich–Peterson, Sips and Toth isotherm models showed similar fits and only the Koble–Corrigan model showed a poor fit. In kinetic studies, pseudo‐first‐order model fitted better than pseudo‐second‐order model. Maximum desorption was observed in alkaline pH, which reveals the possibility of a chemisorption mechanism involved in the removal of PBHB. Among the various desorption media assessed, 70% (v/v) acetone showed complete desorption of the sorbate from the sorbent. Scanning electron microscopy images revealed the non‐fibrous nature of the adsorbent. FT‐IR studies showed the existence of amine groups in the sorbent which are the major adsorbent sites for reactive dyes. Copyright © 2007 Society of Chemical Industry  相似文献   

10.
To achieve the goals of saving water and being salt‐free in the coloration of cotton fabric with reactive dye, nonionic reverse micelles were prepared and optimised with a surfactant, Triton X‐100, n‐octanol and isooctane by injecting a small amount of CI Reactive Red 195 aqueous solution. The adsorption, diffusion and fixation of this dye on cotton fabric in Triton X‐100 reverse micelle and bulk water were then investigated. The equilibrium and kinetic data of the dye adsorption process were evaluated. The colour strength and fixation rate of cotton fabrics dyed in the micelle and in bulk water were also examined and compared. The results indicated that the amount of dye adsorbed increased with the increasing temperature and the initial dye concentration. The dye adsorption process could be described using the Langmuir isotherm and pseudo‐second‐order kinetic equations. It was found that CI Reactive Red 195 showed a stronger adsorption property on cotton fabric in Triton X‐100 reverse micelle than in bulk water without the addition of sodium chloride. Using Triton X‐100 reverse micelle as the dyeing medium offered the reactive dye better diffusion performance within the cotton fibre as compared with bulk water. Moreover, higher fixation of the dyes absorbed on the cotton fibre was achieved when the optimum concentration of sodium carbonate was used as the alkali agent in Triton X‐100 reverse micelle.  相似文献   

11.
The removal of cadmium from aqueous solution by sorption on Aeromonas caviae particles was investigated in a well‐stirred batch reactor. Equilibrium and kinetic experiments were performed at various initial bulk concentrations, biomass loads and temperatures. Biosorption equilibrium was established in about 1 h and biosorption was well described by the Langmuir and Freundlich biosorption isotherms. The maximum biosorption capacity was found as 155.32 mg Cd(II) g?1 at 20 °C. The obtained sorption capacity is appreciably high for most experimental conditions; so A caviae may be considered as a suitable biosorbent for the removal of cadmium. Moreover, the sorption rate of cadmium onto A caviae particles was particularly sensitive to initial bulk concentration and solid load. A detailed analysis was conducted, examining several diffusion (external and intraparticle) kinetic models in order to identify a suitable rate expression. The results are discussed and indicate that biosorption of cadmium is a complex process that is described more correctly by more than one model. Copyright © 2004 Society of Chemical Industry  相似文献   

12.
In this study, the feasibility of using modified plantain peel to remove 2,6-dichlorophenol from iaqueous solutions was investigated under batch mode. The effects of physical factors such as initial 2,6-dichlorophenol concentration, contact time, biosorbent particle size, biosorbent dosage and temperature on the removal process were evaluated. The results showed that biosorption of 2,6-dichlorophenol was dependent on these factors. The equilibrium biosorption data were analyzed by the Langmuir, Freundlich, Temkin, and Dubinin-Radushkevich (D-R) adsorption isotherm models. The four tested isotherm models provided good fits to the experimental data obtained at 30°C; however, the Freundlich isotherm model provided the best correlation (R2 = 0.9874) of the experimental data. The maximum monolayer biosorption capacity (Q max ) was found to be 14.25 mg/g. The biosorption kinetics data of 2,6-dichlorophenol were analyzed by pseudo-first-order, pseudo-second-order, Elovich, intraparticle diffusion, and liquid film diffusion models. The five kinetic models fitted well to the biosorption kinetic data; however, the pseudo-second-order kinetic model gave the best fit when the biosorption mechanism was controlled by film diffusion. Thermodynamic quantities such as standard Gibbs free energy (ΔG°), standard enthalpy (ΔH°), standard entropy change of biosorption (ΔS°), and activation energy (Ea) were evaluated, and it was found that the biosorption process was spontaneous, feasible, endothermic in nature and of dual nature, physisorption and chemisorption; however, the physisorption process was dominant. Therefore, modified plantain peel has potential for application as an effective bioadsorbent for removal of 2,6-dichlorophenol from aqueous solution.  相似文献   

13.
In this study, Chitosan/Al2O3/Fe3O4 core‐shell composite microsphere (CAMF) was used as an effective sorbent with high adsorption capacity for the removal of anionic azo dye model from aqueous solution. The obtained composite was characterized by XRD, SEM, EDX, and BET analysis. The results showed the high methyl orange (MO) adsorption in a wide pH range of 4–10 and the optimum adsorbent dosage was obtained 0.6 g L?1. It is indicated that the equilibrium data followed the Langmuir isotherm model and the adsorption kinetic was well fitted with pseudo‐second‐order kinetic model. Also, the adsorption kinetic was controlled by the film diffusion and intra‐particle diffusion, simultaneously. It is revealed that by increasing the particle size from <0.1 μm to ~0.4 μm, the adsorption capacity did not change, significantly. The adsorption capacity of MO on CAMF was predicted by multilayer perceptron (MLP) neural network at different initial MO concentration, in which the predictions of MLP model had very good agreement with experimental data. © 2016 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2016 , 133, 43466.  相似文献   

14.
The ozonation of wastewater supplied from a treatment plant (Samples A and B) and dye‐bath effluent (Sample C) from a dyeing and finishing mill and acid dye solutions in a semi‐batch reactor has been examined to explore the impact of ozone dose, pH, and initial dye concentration. Results revealed that the apparent rate constants were raised with increases in applied ozone dose and pH, and decreases in initial dye concentration. While the color removal efficiencies of both wastewater Samples A and C for 15 min ozonation at high ozone dosage were 95 and 97%, respectively, these were 81 and 87%, respectively at low ozone dosage. The chemical oxygen demand (COD) and dissolved organic carbon (DOC) removal efficiencies at several ozone dose applications for a 15 min ozonation time were in the ranges of 15–46% and 10–20%, respectively for Sample A and 15–33% and 9–19% respectively for Sample C. Ozone consumption per unit color, COD and DOC removal at any time was found to be almost the same while the applied ozone dose was different. Ozonation could improve the BOD5 (biological oxygen demand) COD ratio of Sample A by 1.6 times with 300 mg dm?3 ozone consumption. Ozonation of acid dyes was a pseudo‐first order reaction with respect to dye. Increases in dye concentration increased specific ozone consumption. Specific ozone consumption for Acid Red 183 (AR‐183) dye solution with a concentration of 50 mg dm?3 rose from 0.32 to 0.72 mg‐O3 per mg dye decomposed as the dye concentration was increased to 500 mg dm?3. © 2002 Society of Chemical Industry  相似文献   

15.
The removal of Ni(II) from aqueous solutions using biomass prepared from Ceiba pentandra hulls powder modified with citric acid treatment (CAMCPH) has been studied by batch method. The biosorbent was characterised before and after citric acid modification using SEM, FT‐IR and XRD. Experimental parameters that influence the biosorption of Ni(II), such as pH, biosorbent dose, contact time and initial concentration of metal ion have been investigated. The adsorption of Ni(II) increased with increase in contact time and reached equilibrium within 50 min. The maximum removal of Ni(II) was observed at pH 5.0. The kinetic data were analysed using three adsorption kinetic models: the pseudo‐first, second‐order kinetics and intra‐particle diffusion. The results showed that the pseudo‐second‐order model fits the experimental data very well. The equilibrium data were analysed using Langmuir, Freundlich and Dubinin–Radushkevich isotherm models. Langmuir model provided the best correlation for the adsorption of Ni(II) by CAMCPH and the monolayer biosorption capacity for Ni(II) removal was 34.34 mg/g. Desorption experiments were carried out using HCl solution and the recovery of the metal ion from CAMCPH was found 98%. Desorption experiments showed the feasibility of regeneration of the biosorbent for further use after treating with dilute HCl. © 2011 Canadian Society for Chemical Engineering  相似文献   

16.
In this study, a new sorbent, a poly(acrylamide‐co‐itaconic acid) [P(AAm‐co‐IA)]/activated charcoal (AC) composite, was prepared by the aqueous polymerization of acrylamide and itaconic acid in the presence of AC with N,N′‐methylene bisacrylamide as a crosslinker and potassium persulfate as an initiator. The P(AAm‐co‐IA)/AC composite sorbent showed a fair capacity to adsorb the cationic dye methylene blue. The maximum sorption capacity, as studied at 23, 37, and 50°C and determined with the Langmuir isotherm model, was found to be 909.0, 312.5, and 192.3 mg/g, respectively. For an initial concentration of 5 mg/L, the kinetic uptake data were studied with various kinetic models. The pseudo‐second‐order equation was found to fairly fit the uptake data with a regression value of 0.999. The dye uptake increased with the pH of the sorbate solution, and the optimum pH was found to be in the range of 7–10. Intraparticle diffusion was also observed to take place, and the coefficient of intraparticle diffusion was evaluated to be 26.51 × 10?2 mg g?1 min?1/2. The various thermodynamic parameters were also determined to predict the nature of the uptake process. The sorption process was found to be spontaneous, as indicated by a negative standard free energy change. The negative standard enthalpy change suggested an exothermic nature for the uptake. © 2010 Wiley Periodicals, Inc. J Appl Polym Sci, 2011  相似文献   

17.
Activated carbons prepared from date pits, an agricultural waste byproduct, have been examined for the adsorption of phenol from aqueous solutions. The activated carbons were prepared using a fluidized bed reactor in two steps; carbonization at 700 °C for 2 hours in N2 atmosphere and activation at 900 °C in CO2 atmosphere. The kinetic data were fitted to the models of intraparticle diffusion, pseudo‐second order, and Lagergren, and followed more closely the pseudo‐second‐order chemisorption model. The isotherm equilibrium data were well fitted by the Freundlich and Langmuir models. The maximum adsorption capacity of activated date pits per Langmuir model was 16 times higher than that of nonactivated date pits. The thermodynamic properties calculated revealed the endothermic nature of the adsorption process. The uptake of phenol increased with increasing initial phenol concentration from10 to 200 ppm and temperature from 25 to 55 °C, and decreased with increasing the solution pH from 4 to 12. The uptake of phenol was not affected by the presence of NaCl salt.  相似文献   

18.
The ability of chitosan, a biosorbent obtained by the processing of waste seafood shells, to remove five acid dyes from effluents has been studied. Chitosan is a deacetylated bio‐polymer of chitin. The effect of varying initial dye concentration on the rate of adsorption has been investigated. The rate data have been analyzed using three kinetic models, namely, a pseudosecond order, the Ritchie modified second order, and the Elovich models. The sorption kinetics of Acid Green 25, Acid Orange 10, Acid Orange 12, Acid Red 18, and Acid Red 73 onto chitosan can be best correlated by the Elovich equation. The kinetic model was determined in accordance with the agreement between the rate equations and the differentiation of kinetic equations. The values of rate constants for the three models are in the range of 0.003–2.230, 0.004–0.237, and 0.0173–405 for the pseudosecond order, the Ritchie modified second order and the Elovich models, respectively. The sensitivity analysis, by plotting the reciprocal of the rate, ZL = (dq/dt)?1 against time, is used to identify the true kinetic model. © 2008 Wiley Periodicals, Inc. J Appl Polym Sci, 2008  相似文献   

19.
BACKGROUND: A filamentous fungus Neurospora sitophila was immobilized in Zea mays silk tissue and the prepared system was employed as a new biosorbent for the treatment of reactive dye contaminated solutions. RESULTS: Decolorization potential of the biosorbent system was investigated in batch and continuous mode operations. Design parameters such as pH, biomass dosage, contact time, temperature, dye concentration and flow rate were investigated. Batch mode equilibrium data were analyzed kinetically to determine the rate constants. The process followed the pseudo‐second‐order kinetic model. The thermodynamics of the biosorption indicated the spontaneous and endothermic nature of the process. Biosorption was well described by the Langmuir isotherm model, with a maximum monolayer biosorption capacity of 105.33 mg g?1. Relatively good dynamic flow decolorization potential was observed for the biosorbent system in synthetic and real wastewater conditions. Flow mode regeneration studies over ten consecutive cycles indicated that the suggested biosorbent maintained consistently high biosorption yield, above 70%. The possible dye‐biosorbent interaction mechanism was also confirmed by zeta potential, FTIR, SEM and EDX analysis. CONCLUSION: High biosorption capacity and regeneration potential suggest that the new biosorbent system can be used as an alternative and low‐cost biomaterial for the treatment of reactive dye contaminated solutions. Copyright © 2011 Society of Chemical Industry  相似文献   

20.
The aim of this study was to statistically evaluate the capability of a prepared TiO2/gum tragacanth hydrogel as a photocatalyst for the removal of methylene blue dye molecules from contaminated solutions. In this regard, TiO2 nanoparticles were sonicated in gum tragacanth and the final hydrogel was prepared by the addition of glutaraldehyde as a crosslinking agent. Response surface methodology was employed as a mathematical and statistical tool to describe the system by a polynomial equation that relates the removal efficiency to selected variables (time, pH, initial dye concentration and photocatalyst dosage). The significance and adequacy of the model were confirmed by high coefficient of determination (R2) and adjusted R2 values (>93%). The system was optimized at an initial dye concentration of 9.37 mg L?1, pH of 9.02, time of 124.34 min and photocatalyst dosage of 0.13 g L?1 using the response optimizer with an efficiency of 88.86%. A kinetic study of photocatalytic decoloration indicated that the pseudo‐second‐order model was well fitted to the experimental data. © 2018 Society of Chemical Industry  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号