首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 390 毫秒
1.
Computational fracture mechanics: Research and application   总被引:3,自引:0,他引:3  
This paper focuses on the impact of computational methodology on furthering the understanding of fundamental fracture phenomena. The current numerical approaches to the solution of fracture mechanics problems, e.g. finite element (FE) methods, finite difference methods and boundary element methods, are reviewed. The application of FE methods to the problems of linear elastic fracture problems is discussed. Particular emphases are placed on the stress intensity factors, energy release rate in mixed mode fracture and dynamic crack propagation. Numerical solutions of ductile fracture problems are surveyed. A special focus is placed on stable crack growth problems. The need for further research in this area is emphasized. The importance of large strain phenomena and accurate modeling of non-linearities is highlighted. An expanded version of fracture mechanics methodology is given by Liebowitz [Advances in Fracture Research 3. Pergamon Press, Oxford (1989)]; additional treatment is given in this paper to numerical results incorporating error estimates and algorithms for mesh design into the FE code. The adaptive method involves various stages which includes FE analysis, error estimation/indication, mesh refinement and fracture/failure analysis iteratively. Reference is made to integrate expert knowledge and a hierarchical, rule-based, decision process to fracture mechanics for the purpose of designing practical fracture-proof engineering products. Some further areas of research in adaptive finite element analysis are discussed.  相似文献   

2.
A posteriori error estimation and adaptive refinement technique for fracture analysis of 2-D/3-D crack problems is the state-of-the-art. The objective of the present paper is to propose a new a posteriori error estimator based on strain energy release rate (SERR) or stress intensity factor (SIF) at the crack tip region and to use this along with the stress based error estimator available in the literature for the region away from the crack tip. The proposed a posteriori error estimator is called the K-S error estimator. Further, an adaptive mesh refinement (h-) strategy which can be used with K-S error estimator has been proposed for fracture analysis of 2-D crack problems. The performance of the proposed a posteriori error estimator and the h-adaptive refinement strategy have been demonstrated by employing the 4-noded, 8-noded and 9-noded plane stress finite elements. The proposed error estimator together with the h-adaptive refinement strategy will facilitate automation of fracture analysis process to provide reliable solutions.  相似文献   

3.
We describe how wavelets constructed out of finite element interpolation functions provide a simple and convenient mechanism for both goal‐oriented error estimation and adaptivity in finite element analysis. This is done by posing an adaptive refinement problem as one of compactly representing a signal (the solution to the governing partial differential equation) in a multiresolution basis. To compress the solution in an efficient manner, we first approximately compute the details to be added to the solution on a coarse mesh in order to obtain the solution on a finer mesh (the estimation step) and then compute exactly the coefficients corresponding to only those basis functions contributing significantly to a functional of interest (the adaptation step). In this sense, therefore, the proposed approach is unified, since unlike many contemporary error estimation and adaptive refinement methods, the basis functions used for error estimation are the same as those used for adaptive refinement. We illustrate the application of the proposed technique for goal‐oriented error estimation and adaptivity for second and fourth‐order linear, elliptic PDEs and demonstrate its advantages over existing methods. Copyright © 2005 John Wiley & Sons, Ltd.  相似文献   

4.
The proposed methodology is based on the use of the adaptive mesh refinement (AMR ) techniques in the context of 2D shape optimization problems analysed by the finite element method. A suitable and very general technique for the parametrization of the optimization problem, using B-splines to define the boundary, is first presented. Then mesh generation, using the advancing frontal method, the error estimator and the mesh refinement criterion are studied in the context of shape optimization problems In particular, the analytical sensitivity analysis of the different items ruling the problem (B-splines. finite element mesh, structural behaviour and error estimator) is studied in detail. The sensitivities of the finite element mesh and error estimator permit their projection from one design to the next one leading to an a priori knowledge of the finite element error distribution on the new design without the necessity of any additional structural analysis. With this information the mesh refinement criterion permits one to build up a finite element mesh on the new design with a specified and controlled level of error. The robustness and reliability of the proposed methodology is checked by means of several examples.  相似文献   

5.
有限元网格修正的自适应分析及其应用   总被引:1,自引:0,他引:1  
本文在对有限元变量连续条件分析的基础上,将应力误差范数用于计算结果的误差估计,使非结构化网格生成系统与有限元计算有机地结合起来,并将网格单元修正的自适应分析应用于二维应力集中问题的研究,从而实现了有限元最佳化离散,提高了有限元数值求解的可靠性和近似程度。  相似文献   

6.
An automatic adaptive refinement procedure for finite element analysis is presented. The procedure is applied to two-dimensional elastostatic problems to obtain solutions of prescribed accuracy. Through the combined use of new mesh generator using contour developed by Lo1 and the concept of strain energy concentration, high-quality graded finite element meshes are generated. The whole process is fully automatic and no user intervention is required during the successive cycles of the mesh refinements. The Zienkiewicz and Zhu2 error estimator is found to be effective and has been adopted for the present implementation. In the numerical examples tested, the error estimator gives an accurate error norm estimation and the effectivity index of the estimator converges to a value close to unity.  相似文献   

7.
This paper describes a p‐hierarchical adaptive procedure based on minimizing the classical energy norm for the scaled boundary finite element method. The reference solution, which is the solution of the fine mesh formed by uniformly refining the current mesh element‐wise one order higher, is used to represent the unknown exact solution. The optimum mesh is assumed to be obtained when each element contributes equally to the global error. The refinement criteria and the energy norm‐based error estimator are described and formulated for the scaled boundary finite element method. The effectivity index is derived and used to examine quality of the proposed error estimator. An algorithm for implementing the proposed p‐hierarchical adaptive procedure is developed. Numerical studies are performed on various bounded domain and unbounded domain problems. The results reflect a number of key points. Higher‐order elements are shown to be highly efficient. The effectivity index indicates that the proposed error estimator based on the classical energy norm works effectively and that the reference solution employed is a high‐quality approximation of the exact solution. The proposed p‐hierarchical adaptive strategy works efficiently. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

8.
A new error estimator is presented which is not only reasonably accurate but whose evaluation is computationally so simple that it can be readily implemented in existing finite element codes. The estimator allows the global energy norm error to be well estmated and alos gives a good evaluation of local errors. It can thus be combined with a full adaptive process of refinement or, more simply, provide guidance for mesh redesign which allows the user to obtain a desired accuracy with one or two trials. When combined with an automatic mesh generator a very efficient guidance process to analysis is avaiable. Estimates other than the energy norm have successfully been applied giving, for instance, a predetermined accuracy of stresses.  相似文献   

9.
In this paper a new technique for a posteriori error control and adaptive mesh design is presented for finite element models in perfect plasticity. The approach is based on weighted a posteriori error estimates derived by duality arguments as proposed in Becker and Rannacher (1996) and Rannacher and Suttmeier (1997) for linear problems. The conventional strategies for mesh refinement in finite element methods are mostly based on a posteriori error estimates for the global energy norm in terms of local residuals of the computed solution. These estimates reflect the approximation properties of the trial functions by local interpolation constants while the stability property of the continuous model enters through a global coercivity constant. However, meshes generated on the basis of such global error estimates are not appropriate in computing local quantities as point values or contour integrals and in the case of nonlinear material behavior. More accurate and efficient error estimation can be achieved by using suitable weights which can be obtained numerically in the course of the refinement process from the solutions of linearized dual problems. This feed-back approach is developed here for primal-mixed finite element models in linear-elastic perfect plasticity.  相似文献   

10.
In this work, we present an adaptive polygonal finite element method (Poly-FEM) for the analysis of two-dimensional plane elasticity problems. The generation of meshes consisting of n ? sided polygonal finite elements is based on the generation of a centroidal Voronoi tessellation (CVT). An unstructured tessellation of a scattered point set, that minimally covers the proximal space around each point in the point set, is generated whereby the method also includes tessellation of nonconvex domains. In this work, we propose a region by region adaptive polygonal element mesh generation. A patch recovery type of stress smoothing technique that utilizes polygonal element patches for obtaining smooth stresses is proposed for obtaining the smoothed finite element stresses. A recovery type a ? posteriori error estimator that estimates the energy norm of the error from the recovered solution is then adopted for the Poly-FEM. The refinement of the polygonal elements is then made on an region by region basis through a refinement index. For the numerical integration of the Galerkin weak form over polygonal finite element domains, we resort to classical Gaussian quadrature applied to triangular subdomains of each polygonal element. Numerical examples of two-dimensional plane elasticity problems are presented to demonstrate the efficiency of the proposed adaptive Poly-FEM.  相似文献   

11.
Global and element residuals are introduced to determine a posteriori, computable, error bounds for finite element computations on a given mesh. The element residuals provide a criterion for determining where a finite element mesh requires refinement. This indicator is implemented in an algorithm in a finite element research program. There it is utilized to automatically refine the mesh for sample two-point problems exhibiting boundary layer and interior layer solutions. Results for both linear and nonlinear problems are presented. An important aspect of this investigation concerns the use of adaptive refinement in conjunction with iterative methods for system solution. As the mesh is being enriched through the refinement process, the solution on a given mesh provides an accurate starting iterate for the next mesh, and so on. A wide range of iterative methods are examined in a feasibility study and strategies for interweaving refinement and iteration are compared.  相似文献   

12.
In this paper, an efficient adaptive analysis procedure is proposed using the newly developed edge-based smoothed point interpolation method (ES-PIM) for both two dimensional (2D) and three dimensional (3D) elasticity problems. The ES-PIM works well with three-node triangular and four-node tetrahedral meshes, is easy to be implemented for complicated geometry, and can obtain numerical results of much better accuracy and higher convergence rate than the standard finite element method (FEM) with the same set of meshes. All these important features make it an ideal candidate for adaptive analysis. In the present adaptive procedure, a novel error indicator is devised for ES-PIM settings, which evaluates the maximum difference of strain energy values among the vertexes of each background cell. A simple h-type local refinement scheme is adopted together with a mesh generator based on Delaunay technology. Intensive numerical studies of 2D and 3D examples indicate that the proposed adaptive procedure can effectively capture the stress concentration and solution singularities, carry out local refinement automatically, and hence achieve much higher convergence for the solutions in strain energy norm compared to the general uniform refinement.  相似文献   

13.
This study enhances the classical energy norm based adaptive procedure by introducing new refinement criteria, based on the projection-based interpolation technique and the steepest descent method, to drive mesh refinement for the scaled boundary finite element method. The technique is applied to p-adaptivity in this paper, but extension to h- and hp-adaptivity is straightforward. The reference solution, which is the solution of the fine mesh formed by uniformly refining the current mesh, is used to represent the unknown exact solution. In the new adaptive approach, a projection-based interpolation technique is developed for the 2D scaled boundary finite element method. New refinement criteria are proposed. The optimum mesh is assumed to be obtained by maximizing the decrease rate of the projection-based interpolation error appearing in the current solution. This refinement strategy can be interpreted as applying the minimisation steepest descent method. Numerical studies show the new approach out-performs the conventional approach.  相似文献   

14.
An automatic adaptive refinement procedure for finite element analysis for two-dimensional stress analysis problems is presented. Through the combined use of the new mesh generator developed by the authors (to appear) for adaptive mesh generation and the Zienkiewicz-Zhu [Int. J. numer. Meth. Engng31, 1331–1382 (1992)] error estimator based on the superconvergent patch recovery technique, an adaptive refinement procedure can be formulated which can achieve the aimed accuracy very economically in one or two refinement steps. A simple method is also proposed to locate the existence and the position of singularities in the problem domain. Hence, little or no a priori knowledge about the location and strength of the singularities is required. The entire adaptive refinement procedure has been made fully automatic and no user intervention during successive cycles of mesh refinements is needed. The robustness and reliability of the refinement procedure have been tested by solving difficult practical problems involving complex domain geometry with many singularities. We found that in all the examples studied, regardless of the types of meshes employed, triangular and quadrilateral meshes, nearly optimal overall convergence rate is always achieved.  相似文献   

15.
A Raviart-Thomas mixed finite element discretization for general bilinear optimal control problems is discussed. The state and co-state are approximated by lowest order Raviart-Thomas mixed finite element spaces, and the control is discretized by piecewise constant functions. A posteriori error estimates are derived for both the coupled state and the control solutions, and the error estimators can be used to construct more efficient adaptive finite element approximations for bilinear optimal control problems. An adaptive algorithm to guide the mesh refinement is also provided. Finally, we present a numerical example to demonstrate our theoretical results.  相似文献   

16.
Fully automatic advancing front type mesh generator to take care of crack and fracture problems has been presented. It is coupled with Zienkiewicz and Zhu error estimator, the refinement methodology depends on the concept of strain energy concentration for adaptive analysis of mixed‐mode crack problems. No investigation is reported in this direction so far. It has been found that the above combination proved to be very powerful for adaptive finite element analysis of mixed‐mode crack problems in two‐dimensional isotropic solids. Very accurate stress intensity factors have been obtained for a target error of 10 per cent with a minimum number of steps. Copyright © 2000 John Wiley & Sons, Ltd.  相似文献   

17.
A simple algorithm is developed for adaptive and automatic h refinement of two-dimensional triangular finite element meshes. The algorithm is based on an element refinement ratio that can be calculated from an a posteriori error indicator. The element subdivision algorithm is robust and recursive. Smooth transition between large and small elements is achieved without significant degradation of the aspect ratio of the elements in the mesh. Several example problems are presented to illustrate the utility of the approach.  相似文献   

18.
This paper describes a mesh refinement technique for boundary element method in which the number of elements, the size of elements and the element end location are determined iteratively in order to obtain a user specified accuracy. The method uses L1 norm as a measure of error in the density function and a grading function that ensures that error over each element is the same. The use of grading function along with L1 norm makes the mesh refinement technique applicable to Direct and Indirect boundary element method formulation for a variety of boundary element method applications. Numerical problems in elastostatics, fracture mechanics, and bending of plate solved using Direct and Indirect method in which the density functions are approximated by Linear Lagrange, Quadratic Lagrange or Cubic Hermite polynomials validate the effectiveness of the proposed mesh refinement technique. © 1998 John Wiley & Sons, Ltd.  相似文献   

19.
20.
Taken the linear elasticity problems as examples, some benchmark problems are presented to investigate the influence of calculation error and discretization error on the accuracy of boundary element analysis. For the conventional boundary element analysis based on singular kernel function of fundamental solution and using Gaussian elimination method, the main calculation error comes from the integration of kernel and shape function product on each element. Based on some benchmark problems of “simple problem” without discretization error, it can be observed that sometimes a large number of integration points in Gaussian quadrature should be adopted. To guarantee the integration accuracy reliably, an improved adaptive Gaussian quadrature approach is presented and verified. The main error of boundary element analysis is the discretization error, provided the calculation error has been reduced effectively. Based on some benchmark problems, it can be observed that for the bending problems both the constant and linear element are not efficient, the quadratic element with a reasonable refined mesh is required to guarantee the accuracy of boundary element analysis. An error indicator to guide the mesh refinement in the convergence test towards the converged accurate results based on the distribution of boundary effective stress is presented and verified.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号