首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 250 毫秒
1.
Growth, biomass yield, fiber content and lodging resistance were studied, during a six month growth period, for eight varieties of Cenchrus purpureus, intended as energy crop, in Veracruz, Mexico. Then, only yield at day 182 was assessed for two additional years. The varieties were: CT115 (CT), African Cane (AC), Taiwan (TAI), King Grass (KG), Vruckwona (VRU), Roxo (RX), OM22 (OM) and Cameroon (CAM). Local weather is warm and sub-humid, historical data for monthly average temperature and annual rainfall were 25.8 °C and 1142 mm, respectively. Height, diameter and light interception were measured monthly from day 65–185. At day 185, biomass yield and tiller density were measured. Number of lying tillers was counted to estimate lodging resistance. Cellulose and hemicellulose content were estimated in leaf and stem. No differences were found for dry matter yield or stem yield at day 185 in the first year. Regarding the next two years, TAI yielded above CT, OM or ROX. Average dry matter yield was higher in the second year than in the establishment cycle (38.6 vs 21.1 Mg ha−1), but decreased in the third year (32.2 Mg ha−1). In both stem and whole plant, AC and KG showed higher hemicellulose content than RX, OM or CT; while AC and VRU had higher cellulose than RX in stem, or than CT in the whole plant. Furthermore, varieties AC, KG, VRU and TAI were resistant to lodging and had a higher fiber content, so they are recommended as energetic crops.  相似文献   

2.
Organic acids are envisaged as alternative catalysts to strong mineral acids, in pre-treatment of ligno-cellulosic biomass for anaerobic digestion (AD). To evaluate this hypothesis, an untreated control and four pre-treatments (25 °C for 24 h) involving two levels of maleic acid (34.8 and 69.6 kg m−3), alone and combined with sulphuric acid (4 kg m−3), were studied in three agricultural substrates: Arundo (aka giant reed), Barley straw and B133 fibre sorghum. Methane production was assessed in a batch AD assay (35 °C for 51 days) with 4 g L−1 of volatile solid (VS) load. Fibre composition and structure were investigated through chemical analysis and Fourier transform infrared (FTIR) spectrometry. Arundo and B133 that were the most and least recalcitrant substrate, respectively, staged the highest and lowest increase in methane with high maleic acid: +62% over 218 cm3 g−1 of VS in untreated Arundo; +36% over 284 cm3 g−1 of VS in untreated B133. Barley straw showed an intermediate behaviour (+41% over 269 cm3 g−1 of VS). H2SO4 addition to maleic acid did not improve CH4 output. The large increase in methane yield determined by pre-treatments was reflected in the concurrent decrease of fibre (between 14 and 39% depending on fibrous component). Based on FTIR spectra, bands assigned to hemicellulose and cellulose displayed lower absorbance after pre-treatment, supporting the hypothesis of solubilisation of structural carbohydrates and change in fibre structure. Hence, maleic acid was shown a suitable catalyst to improve biodegradability of ligno-cellulosic biomass, especially in recalcitrant substrates as Arundo.  相似文献   

3.
Grass from urban roadside verges is a potential, though widely unused, resource for bioenergy recovery. Two possible bioenergy recovery techniques were tested, i.e. i) direct anaerobic digestion of the whole parent material and ii) the “integrated generation of solid fuel and biogas from biomass” (IFBB) procedure, which divides biomass into a press fluid and a press cake by mashing and mechanical dewatering. Biomass yield, chemical composition and canopy height of biomass, contribution of functional groups, fermentation characteristics of silage and press fluids, as well as characteristics of the produced solid fuel was investigated, applying a 4-cut management for anaerobic digestion, a 2-cut management for IFBB and an 8 times mulching as a reference. Mean annual biomass yield (2013 and 2014) was 3.24, 3.33 and 5.68 t dry matter ha−1 for the mulching, 4-cut management and 2-cut management, respectively. Yields were higher in 2014 due to more favourable weather conditions. Fibre concentration was higher in material of the 2-cut management than in the 4-cut management, however, methane yield of the corresponding silages was the same. Highest methane yield was gained from press fluids with 292 lN kg−1 volatile solids. The press cake had a lower heating value of 16 MJ kg−1 dry matter and a K2O/CaO index of 0.51–0.88. Gross energy output was 26.4 GJ ha−1 for anaerobic digestion and 84.4 GJ ha−1 for IFBB. Thus, an altered roadside verge management with reduced cutting frequency might allow a significant energy recovery and improved ecosystem services, i.e. increased biodiversity.  相似文献   

4.
Short rotation woody crops (SRWCs) are being studied and cultivated because of their potential for bioenergy production. The harvest operation represents the highest input cost for these short rotation woody crops. We evaluated three different harvesting machines representing two harvesting systems at one operational large-scale SRWC plantation. On average, 8 ton ha−1 of biomass was harvested. The cut-and-chip harvesters were faster than the whole stem harvester; and the self-propelled harvester was faster than the tractor-pulled. Harvesting costs differed among the harvesting machines used and ranged from 388 € ha−1 to 541 € ha−1. The realized stem cutting heights were 15.46 cm and 16.00 cm for the tractor-pulled stem harvester and the self-propelled cut-and-chip harvester respectively, although a cutting height of 10 cm was requested in advance. From the potential harvestable biomass, only 77.4% was harvested by the self-propelled cut-and-chip harvester, while 94.5% was harvested by the tractor-pulled stem harvester. An increase of the machinery use efficiency (i.e. harvest losses, cost) is necessary to reduce costs and increase the competitiveness of biomass with other energy sources.  相似文献   

5.
Feedstock quality mainly depends upon the biomass composition and bioenergy conversion system being used. Higher cellulose and hemicellulose concentrations are desirable for biochemical conversion, whereas higher lignin is favored for thermochemical conversion. The efficiency of these conversion systems is influenced by the presence of high nitrogen and ash concentrations. Switchgrass (Panicum virgatum L.) varieties are classified into two ecotypes based on their habitat preferences, i.e., upland and lowland. The objectives of this study were to quantify the chemical composition of switchgrass varieties as influenced by harvest management, and to determine if ecotypic differences exist among them. A field study was conducted near Ames, IA during 2012 and 2013. Upland (‘Cave-in-Rock’, ‘Trailblazer’ and ‘Blackwell’) and lowland switchgrass varieties (‘Kanlow’ and ‘Alamo’) were grown in a randomized block design with six replications. Six biomass harvests were collected at approximately 2-week intervals each year. In both years, delaying harvest increased cellulose, hemicellulose and lignin concentrations while decreasing nitrogen and ash concentrations in all varieties. On average, Kanlow had the highest cellulose and hemicellulose concentration (354 and 321 g kg−1 DM respectively), and Cave-in-Rock had the highest lignin concentration (33 g kg−1 DM). The lowest nitrogen and ash concentrations were observed in Kanlow (14 and 95 g kg−1 DM respectively). In general, our results indicate that delaying harvest until fall improves feedstock quality, and ecotypic differences do exist between varieties for important feedstock quality traits. These findings also demonstrate potential for developing improved switchgrass cultivars as bioenergy feedstock by intermating lowland and upland ecotypes.  相似文献   

6.
The potential of sweet sorghum as an alternative crop for ethanol production was investigated in this study. Initially, the enzymatic hydrolysis of sorghum grains was optimized, and the hydrolysate produced under optimal conditions was used for ethanol production with an industrial strain of Saccharomyces cerevisiae, resulting in an ethanol concentration of 87 g L−1. From the sugary fraction (sweet sorghum juice), 72 g L−1 ethanol was produced. The sweet sorghum bagasse was submitted to acid pretreatment for hemicellulose removal and hydrolysis, and a flocculant strain of Scheffersomyces stipitis was used to evaluate the fermentability of the hemicellulosic hydrolysate. This process yielded an ethanol concentration of 30 g L−1 at 23 h of fermentation. After acid pretreatment, the remaining solid underwent an alkaline extraction for lignin removal. This partially delignified material, known as partially delignified lignin (PDC), was enriched with nutrients in a solid/liquid ratio of 1 g/3.33 mL and subjected to simultaneous saccharification and fermentation (SSF) process, resulting in an ethanol concentration of 85 g L−1 at 21 h of fermentation. Thus, from the conversion of starchy, sugary and lignocellulosic fractions approximately 160 L ethanol.ton−1 sweet sorghum was obtained. This amount corresponds to 13,600 L ethanol.ha−1.  相似文献   

7.
The key challenges in lipid production from marine microalgae include the selection of appropriate strain, optimization of the culture conditions and enhancement of biolipid yield. This study is aimed at evaluating the optimal harvest time and effect of chlorella growth factor (CGF) extract, carbon sources and phytohormones on the biomass and lipid production in Chlorella vulgaris. CGF, extracted using hot water from Chlorella has been reported to possess various medicinal properties. However, in the present study, for the first time in C. vulgaris, CGF was found as a best growth stimulator by enhancing the biomass level (1.208 kg m−3) significantly on day 5. Gibberellin and citrate augmented the biomass by 0.935 kg m−3 and 1.025 kg m−3. Combination of CGF and phytohormones were more effective than CGF and carbon sources. Analysis of fatty acid methyl esters indicated that the ratio of saturated to unsaturated fatty acids is higher in cytokinin, abscisic acid and CGF, and are also rich in short chain carbon atoms, ideal criteria for biodiesel. Nitrogen starvation favoured synthesis of more unsaturated fatty acids than saturated. This study shows that CGF enhances the biomass and lipid significantly and thus can be used for large scale biomass production.  相似文献   

8.
To date little information is available on methods including soil preparation and weed control in SRC. For this purpose, in 2010, a field trial with willow cv. ‘Tordis’ was established in southwest Germany. Three different tillage systems (mouldboard plough, chisel plough + ley crop, no-till) were implemented in the establishment year in combination with eight chemical and mechanical weed management systems. Over a period of three years, plant and weed specific parameters were collected to determine the effect of tillage systems and weed treatments on final biomass production of willow. The highest biomass yields were obtained by mouldboard plough with chemical weed control (14.0 Mg ha−1 dry matter) as well as by mouldboard plough with rotivation and band spraying of herbicides (14.2 Mg ha−1 dry matter), followed by 13.7 Mg ha−1 dry matter in no-till with broadcast application of herbicides. Chisel ploughing with ley crop led to lower willow yields in most weed treatments. It was assumed that chisel ploughing + ley crop would lead to a high competition for light, water and nutrients especially in the first year. Consequently, it is not recommended as an establishment method for willow. Additionally, mulching with wood chips and no weed management generally resulted in low biomass yields. Overall, the results suggest that the tillage system in combination with effective chemical or mechanical weed control is of major importance for the success of willow establishment.  相似文献   

9.
Napiergrass (Pennisetum purpureum Schum.) is a promising low cost raw material which does not compete with food prices, has attractive yields and an environmentally friendly farming. Dilute sulfuric acid pretreatment of napiergrass was effective to obtain high yields of sugars and low level of degradation by-products from hemicellulose. Detoxification with Ca(OH)2 removed inhibitors but showed sugars loss. An ethanol concentration of 21 g/L after 176 h was found from the hydrolyzate using Pichia stipitis NBRC 10063 (fermentation efficiency 66%). An additional alkaline pretreatment applied to the solid fraction remaining from the diluted acid pretreatment improved the lignin removal. The highest cellulose hydrolysis values were found with the addition of β-glucosidase and PEG 6000. The simultaneous hydrolysis and fermentation of the cellulosic fraction with Saccharomyces cerevisiae, 10% (w/v) solid concentration, β-glucosidase and PEG 6000, showed the highest ethanol concentration (24 g/L), and cellulose hydrolysis values (81%). 162 L ethanol/t of dry napiergrass were produced (overall efficiency of 52%): 128 L/t from the cellulosic fraction and 34 L/t from the hemicellulosic fraction.  相似文献   

10.
Forestlands in the United States have tremendous potential for providing feedstocks necessary to meet emerging renewable energy standards. The Lake States region is one area recognized for its high potential of supplying forest-derived biomass; however, the long-term availability of roundwood harvests and associated residues from this region has not been fully explored. Better distribution and temporal availability estimates are needed to formulate emerging state policies regarding renewable energy development. We used a novel predictive methodology to quantify sustainable biomass availability and likely harvest levels over a 100-year period in the Lake States region. USDA Forest Inventory and Analysis estimates of timberland were combined with published growth and yield models, and historic harvest data using the Forest Age Class Change Simulator (FACCS) to generate availability estimates. Monte-Carlo simulation was used to develop probability distributions of biomass harvests and to incorporate the uncertainty of future harvest levels. Our results indicate that 11.27–15.71 Mt y−1 dry roundwood could be sustainably harvested from the Lake States. Assuming 65% collection rate, 1.87–2.62 Mt y−1 residue could be removed, which if substituted for coal would generate 2.12–2.99 GW h of electricity on equivalent energy basis while reducing GHG (CO2e) emission by 1.91–2.69 Mt annually. In addition to promoting energy security and reducing GHG emissions, forest residues for energy may create additional revenues and employment opportunities in a region historically dependent on forest-based industries.  相似文献   

11.
Pulp and paper industry primary sludge being largely composed of lignocellulosic fibres, it could be used as carbon source by bacteria having cellulolytic capability. The aim of this study was to evaluate the use of cellulose contained in this type of sludge for Clostridium thermocellum to produce ethanol, hydrogen and cellulases. In an ATCC 1191 medium containing 5 kg m−3 dry primary sludge from recycled paper mill, batch culture reached stationary phase after 2 days. All of the available cellulose was hydrolysed after 60 h of incubation, with a final pH of 5.83. Metabolites produced after 60 h of fermentation were acetate (8.50 mol m−3), ethanol (11.30 mol m−3), lactate (8.75 mol m−3), formate (0.27 mol m−3), hydrogen (11.20 mol m−3) and carbon dioxide (18.41 mol m−3). Cellulase activity was detected in the supernatant after 36 h, with a maximal activity of 0.25 U cm−3 at 72 h. Pulp and paper primary sludge appeared to be a readily usable substrate for C. thermocellum at this concentration, yielding both potential biofuels (hydrogen and ethanol) as well as active cellulases.  相似文献   

12.
The area used for bioenergy feedstock production is increasing because substitution of fossil fuels by bioenergy is promoted as an option to reduce greenhouse gas (GHG) emissions. However, agriculture itself contributes to rising atmospheric nitrous oxide (N2O) and methane (CH4) concentrations. In this study we tested whether the net exchanges of N2O and CH4 between soil and atmosphere differ between annual fertilized and perennial unfertilized bioenergy crops. We measured N2O and CH4 soil fluxes from poplar short rotation coppice (SRC), perennial grass-clover and annual bioenergy crops (silage maize, oilseed rape, winter wheat) in two central German regions for two years. In the second year after establishment, the N2O emissions were significantly lower in SRC (<0.1 kg N2O–N ha−1 yr−1) than grassland (0.8 kg N2O–N ha−1 yr−1) and the annual crop (winter wheat; 1.5 kg N2O–N ha−1 yr−1) at one regional site (Reiffenhausen). However, a different trend was observed in the first year when contents of mineral nitrogen were still higher in SRC due to former cropland use. At the other regional site (Gierstädt), N2O emissions were generally low (<0.5 kg N2O–N ha−1 yr−1) and no crop-type effects were detected. Net uptake of atmospheric CH4 varied between 0.4 and 1.2 kg CH4–C ha−1 yr−1 with no consistent crop-type effect. The N2O emissions related to gross energy in the harvested biomass ranged from 0.07 to 6.22 kg CO2 equ GJ−1. In both regions, Gierstädt (low N2O emissions) and more distinct Reiffenhausen (medium N2O emissions), this energy yield-related N2O emission was the lowest for SRC.  相似文献   

13.
The sickle bush (Dichrostachys cinerea (L.) Wight & Arn.) comprises a woody legume shrub which is widely distributed throughout of the tropical areas of Africa, Asia and Oceania, being found as well in Cuba where it represents a difficult to control invasive plant. It holds great silvopasture and energy crop potentials. In southwestern Spain a two year field trial was conducted contemplating also another six hardwood taxa commonly used as energy crops. The sickle bush above ground dry biomass fraction was 60.4%; sickle bush displayed a high transpiration rate during hot days (3.02 kg m−2 d−1 to 6.82 kg m−2 d−1); cold winter temperatures (<−2 °C) together with hot and dry summer air (<20% relative humidity) committed survival and growth. The physical-chemical wood properties and the pellets thereof derived were analyzed and compared to those of the other energy crop taxa. The within other woody species normal chemical composition range coupled to a high wood density and energetic use properties (19.2 MJ kg−1 higher heating value, 29 g kg−1 ash content) all allow for an industrial use. Pellets evidenced also good physical and mechanical properties (690 kg m−3 bulk density, 42 g kg−1 moisture content). However, the mechanical durability (93.9%) was slightly less than that required by the non-industrial use standards, therefore further improvements should be studied. All of the above could encourage scrubland cuts in Cuba as a mechanical control method, in addition to the expansion of plantations within of their tropical climate based natural habitats.  相似文献   

14.
Seaweeds are marine macroalgae found abundantly and viewed as potential source of phycocolloids to produce biofuel. In this study, seaweed spent biomass obtained from alginate production industry and biomass obtained after pigment extraction were found to contain a considerable amount of phycocolloids. These two spent biomasses were investigated for the production of ethanol. In this study, the red seaweed spent biomass of Gracilaria corticata var corticata showed higher content of polysaccharide (190.71 ± 30.67 mg g−1 dry weight) than brown seaweed spent biomass (industrial) (136.28 ± 30.09 mg g−1 dry weight). Hydrolysis of spent biomasses with different concentrations of sulfuric acid (0.1%, 0.5% and 1%) was also investigated. Brown seaweed spent biomass and red seaweed spent biomass exhibited high amount of sugar in 0.5% and 1% sulfuric acid treatment, respectively. Proximate and ultimate composition of seaweed spent biomasses were analysed for energy value. The FT-Raman spectra exhibited similar stretches for both acid hydrolysed spent biomasses with their respective standards. Ethanol produced through a fermentation process using spent hydrolysates with baker's yeast at pH 5.3 was found to be significant. The ethanol yield from brown seaweed spent biomass and red seaweed spent biomass was observed to be 0.011 g g−1 and 0.02 ± 0.003 g g−1 respectively, when compared with YPD (0.42 ± 0.03 g g−1) and d-galactose (0.37 ± 0.04 g g−1) as standard on day 4. The present study revealed the possibility of effective utilization of spent biomass from seaweed industry for ethanol production.  相似文献   

15.
Literature values for glucose release from corn stover are highly variable which would likely result in tremendous variability in bio-refinery ethanol yield from corn stover feedstock. A relatively recent change in United States corn genetics is the inclusion of the Bacillus thuringiensis (Bt) trait, which now accounts for three-fourths of all US planted corn acreage. The objective of this study was to evaluate the effect of corn grain yield, inclusion of the Bt trait, and location environment on corn stover quality for subsequent ethanol conversion. Two hybrid pairs (each having a Bt and non-Bt near-isoline) were analyzed giving a total of 4 hybrids. In 2010 and 2011, field plots were located in Michigan at four latitudinal differing locations in four replicated plots at each location. Stover composition and enzymatic digestibility was analyzed and estimated ethanol yield (g g−1) was calculated based on hydrolyzable glucan and xylan levels. Analysis showed that there were no significant differences in total glucose or xylose levels nor in enzymatically hydrolyzable glucan and xylan concentrations between Bt corn stover and the non-Bt stover isolines. Regression analyses between corn grain yield (Mg ha−1) and corn stover ethanol yield (g g−1) showed an inverse relationship indicative of a photosynthate source-sink relationship. Nevertheless, the quantity of stover produced was found to be more critical than the quality of stover produced in maximizing potential stover ethanol yield on a land area basis.  相似文献   

16.
Research is focused on the utilisation of waste or residue biomass for bioenergy conversion. A promising conversion technology for the production of liquid biofuels from residue biomass is a process called Thermo-Catalytic Reforming (TCR®​) which is a combination of prior thermal treatment of the biomass at mild temperatures (intermediate pyrolysis) followed by a second catalytic treatment step at elevated temperatures (reforming). This article focuses on the conversion of TCR® liquids from digestate as a feedstock for subsequent hydrocarbon production. The generated bio-oil showed a lower heating value of 34.0 MJ kg1 with an oxygen content of 7.0% and a water content of 2.2%. The bio-oil was hydrodeoxygenated using an industrial NiMo–Al2O3 catalyst at temperatures of 503 K–643 K and a pressure of 14 MPa. The hydrodeoxygenated bio-oil reached a lower heating value of 42.3 MJ kg−1 with an oxygen content below 0.8 mg kg−1 and water content of 30 ppm. Product yields and catalyst life give confidence that upgrading of the TCR®​ bio-oil offers a suitable option to meet the high standards of common fuels.  相似文献   

17.
Pretreatments are crucial to achieve efficient conversion of lignocellulosic biomass to soluble sugars. In this light, switchgrass was subjected to 13 pretreatments including steam explosion alone (195 °C for 5, 10 and 15 min) and after impregnation with the following catalysts: Ca(OH)2 at low (0.4%) and high (0.7%) concentration; Ca(OH)2 at high concentration and higher temperature (205 °C for 5, 10 and 15 min); H2SO4 (0.2% at 195 °C for 10 min) as reference acid catalyst before steam explosion. Enzymatic hydrolysis was carried out to assess pretreatment efficiency in both solid and liquid fraction. Thereafter, in selected pretreatments the solid fraction was subjected to simultaneous saccharification and fermentation (SSF), while the liquid fraction underwent anaerobic digestion (AD). Lignin removal was lowest (12%) and highest (35%) with steam alone and 0.7% lime, respectively. In general, higher cellulose degradation and lower hemicellulose hydrolysis were observed in this study compared to others, depending on lower biomass hydration during steam explosion. Mild lime addition (0.4% at 195 °C) enhanced ethanol in SSF (+28% than steam alone), while H2SO4 boosted methane in AD (+110%). However, methane represented a lesser component in combined energy yield (ethanol, methane and energy content of residual solid). Mild lime addition was also shown less aggressive and secured more residual solid after SSF, resulting in higher energy yield per unit raw biomass. Decreased water consumption, avoidance of toxic compounds in downstream effluents, and post process recovery of Ca(OH)2 as CaCO3 represent further advantages of pretreatments involving mild lime addition before steam explosion.  相似文献   

18.
This paper reviews developments in the direct-fired biomass power sector and provides an up to date investment outlook by calculating the Net Present Value of new investments, and the appropriate level of Feed-in-Tariff needed to stimulate future investment. An overview is provided of support policies, historical growth in installations, and main market players. A number of data sources is combined to build a database with detailed information of individual biopower projects. This data is used to describe technological and market trends, which are used in a cash flow model to calculate the NPV of a typical project. The NPV for new projects is estimated to be negative, and investment should be expected to stall without proper policy intervention. Increasing fuel prices, local competition over biomass fuel resources, lower than expected operational performance and a downturn in carbon markets have deteriorated the investment outlook. In order to ensure reasonable profitability, the Feed-In-Tariff should be increased, from the current level of 90.9 € MWh−1, to between 97 and 105 € MWh−1. Where possible, government organizations should help organize demand for the supply of heat. Local rural energy bureaus may help organize supply networks for biomass fuels throughout the country, in order to reduce seasonal and local fuel scarcity and price fluctuations.  相似文献   

19.
Expectations are high for energy crops. Government policies in the United States and Europe are increasingly supporting biofuel and heat and power from cellulose, and biomass is touted as a partial solution to energy security and greenhouse gas mitigation. Here, we review the literature for yields of 5 major potential energy crops: Miscanthus spp., Panicum virgatum (switchgrass), Populus spp. (poplar), Salix spp. (willow), and Eucalyptus spp. Very high yields have been achieved for each of these types of energy crops, up to 40 t ha−1 y−1 in small, intensively managed trials. But yields are significantly lower in semi-commercial scale trials, due to biomass losses with drying, harvesting inefficiency under real world conditions, and edge effects in small plots. To avoid competition with food, energy crops should be grown on non-agricultural land, which also lowers yields. While there is potential for yield improvement for each of these crops through further research and breeding programs, for several reasons the rate of yield increase is likely to be slower than historically has been achieved for cereals; these include relatively low investment, long breeding periods, low yield response of perennial grasses to fertilizer, and inapplicability of manipulating the harvest index. Miscanthus × giganteus faces particular challenges as it is a sterile hybrid. Moderate and realistic expectations for the current and future performance of energy crops are vital to understanding the likely cost and the potential of large-scale production.  相似文献   

20.
In this study, thermo-environmental sustainability of an oil palm-based biorefinery concept for the co-production of cellulosic ethanol and phytochemicals from oil palm fronds (OPFs) was evaluated based on exergetic life cycle assessment (ExLCA). For the production of 1 tonne bioethanol, the exergy content of oil palm seeds was upgraded from 236 MJ to 77,999 MJ during the farming process for OPFs production. Again, the high exergy content of the OPFs was degraded by about 62.02% and 98.36% when they were converted into cellulosic ethanol and phenolic compounds respectively. With a total exergy destruction of about 958,606 MJ (internal) and 120,491 MJ (external or exergy of wastes), the biorefinery recorded an overall exergy efficiency and thermodynamic sustainability index (TSI) of about 59.05% and 2.44 per tonne of OPFs' bioethanol respectively. Due to the use of fossil fuels, pesticides, fertilizers and other toxic chemicals during the production, the global warming potential (GWP = 2265.69 kg CO2 eq.), acidification potential (AP = 355.34 kg SO2 eq.) and human toxicity potential (HTP = 142.79 kg DCB eq.) were the most significant environmental impact categories for a tonne of bioethanol produced in the biorefinery. The simultaneous saccharification and fermentation (SSF) unit emerged as the most exergetically efficient (89.66%), thermodynamically sustainable (TSI = 9.67) and environmentally friendly (6.59% of total GWP) production system.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号