首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Silicon carbide particle/polystyrene (SiCp/PS) electrospun mats are firstly prepared by electrospinning technology, then to be fabricated the corresponding thermally conductive SiCp/PS composites by the method of “laminating-hot press”. The mass fraction of SiCp and laminating mode of SiCp/PS electrospun mats affecting on the thermal conductivities, dielectric and thermal properties of the composites are investigated. The addition of 32.8 vol% SiCp improves the thermally conductive coefficient λ of pure PS from 0.182 to 0.566 W/m K and thermal diffusivity of pure PS from 0.169 to 0.376 mm2/s, whereas the dielectric constant values still remain at relatively low levels. The thermal stabilities of the SiCp/PS composites are increased with the increasing addition of SiCp. For a given SiCp loading, the SiCp/PS composites from warp–weft arrangement of SiCp/PS electrospun mats possess relative higher thermally conductive coefficient λ and dielectric constant values than those of SiCp/PS composites from warp–warp arrangement of SiCp/PS electrospun mats.  相似文献   

2.
Various ultra-high-molecular-weight polyethylene (UHMWPE)/boron nitride (BN) and UHMWPE/(BN + multi-wall carbon nanotube (MWCNT)) composites with segregated structure were prepared by using the compression molding process. The dispersion of fillers under different compression molding were observed by optical microscopy and scanning electron microscopy. The results showed that integrated thermal conductive networks were formed after cold-pressing sintering. However, these networks would be destroyed by middle-high pressure/high temperature treatment. Although the treatment of high pressure/high temperature can effectively improve the crystallinity and crystal size of UHMWPE, the thermal conductivity of composite dramatically decreased due to the replacement of filler-filler by filler-polymer-filler interface. The 1D-MWCNT is liable to entangle with 2D-BNs and formed MWCNT-BN networks even at high pressure/high temperature, leading to a nearly constant thermal conductivity (reached 1.794 W/m·K with the addition of 50% (BNs + MWCNT) hybrid fillers). Besides, the dispersion of the fillers have a great influence on thermal stability of the composites.  相似文献   

3.
In this paper, we report a unique method to develop polyvinylidene fluoride (PVDF) composites with high dielectric constant and low loss tangent by loading relatively low content of graphene-encapsulated barium titanate (BT) hybrid fillers. BT particles encapsulated with graphene oxide (BT-GO) were prepared via electrostatic self-assembly and subsequent chemical reduction resulted in BT-RGO particles. SEM morphology revealed that RGO sheets were segregated by BT particles. The hybrid fillers have two advantages for tuning dielectric properties: loading extremely low content of RGO can be exactly controlled and individual RGO sheets segregated by BT particles would prevent leakage current. As a result, PVDF composites filled with BT-RGO displayed improved dielectric properties before percolative behavior occurred. Composites filled with 30 vol% BT-RGO have a dielectric constant and loss tangent (tan δ) value of 67.5 and 0.060 (1 kHz), respectively. By contrast, dielectric constant and tan δ of composites filled with 30 vol% BT-GO and BT were 57.7 and 38.3, 0.076 and 0.042 (1 kHz), respectively. The improvement of dielectric constant is attributable to the formation of microcapacitors by highly conductive RGO sheets segregated by BT particles. Meanwhile, the distance between adjacent RGO sheets is large enough to prevent leakage current from tunneling conductance, by which tan δ is remarkably constrained. The composites could achieve excellent dielectric properties by loading relatively low amount of ceramic fillers, which indicates that this method can be used as guideline for reduce the usage amount of ceramic fillers.  相似文献   

4.
Nowadays, dielectric materials with excellent mechanical and hydrophobic properties are desired for use in the integrated circuits (ICs). For this reason, low dielectric constant fluorographene/polyimide (FG/PI) composite films were prepared by a facile solution blending method, suggesting that the mechanical, electrical, hydrophobic and thermal properties were significantly enhanced in the presence of FG. With addition of 1 wt% FG, the tensile strength, Young’s modulus and elongation at break were dramatically increased by 139%, 33% and 18% respectively when compared with pure PI film. Furthermore, composite films exhibit superior hydrophobic and thermal stability performance. Especially, the FG/PI film with 0.5 wt% of FG possessing a low dielectric constant of 2.48 and a good electrical insulativity that is lower than 10−14 S m−1. Therefore, by their excellent performance, FG/PI hybrid films represent suitable candidate solutions with applications in the microelectronics and aerospace industries.  相似文献   

5.
Aluminum-hydroxide-covered multi-walled carbon nanotubes (A–MWCNT) were fabricated as a thermally conductive material. The thermal conductivity of A–MWCNT was estimated based on Casimir theory. The effective thermal conductivity of A–MWCNT was estimated at about ∼26 W/mK. The thermal conductivity of A–MWCNT/epoxy-terminated polydimethylsiloxane (ETDS) composite was examined as a function of A–MWCNT loading, and the results showed the maximum value at 1.5 wt% of A–MWCNT loading, above which it decreased slightly. The effective medium approximation (EMA) developed by Maxwell–Garnett (M–G) was used to analyze the thermal conducting behavior of the composite. The experimental results showed negative deviation from the expected thermal conductivity, ke, beyond 1.5 wt% of A–MWCNT loading, because the composites containing A–MWCNT were strongly affected by interfacial resistance. The interfacial resistance value calculated from M–G approximation increased when filler loading was higher than 1.5 wt% because of the folded and partially agglomerated A–MWCNT along with insufficient interfacial interactions.  相似文献   

6.
Due to the growing needs of thermal management in modern electronics, polyimide-based (PI) composites are increasingly demanded in thermal interface materials (TIMs). Graphene woven fabrics (GWFs) with a mesh structure have been prepared by chemical vapor deposition and used as thermally conductive filler. With the incorporation of 10-layer GWFs laminates (approximate 12 wt%), the in-plane thermal conductivity of GWFs/PI composite films achieves 3.73 W/mK, with a thermal conductivity enhancement of 1418% compared to neat PI. However, the out-of-plane thermal conductivity of the composites is only 0.41 W/mK. The in-plane thermal conductivity exceeds its out-of plane counterpart by over 9 times, indicating a highly anisotropic thermal conduction of GWFs/PI composites. The thermal anisotropy and the enhanced in-plane thermal conductivity can be attributed to the layer-by-layer stacked GWFs network in PI matrix. Thus, the GWFs-reinforced polyimide films are promising for use as an efficient heat spreader for electronic cooling applications.  相似文献   

7.
Weak interfacial bonding between carbon materials and polymer matrix impedes the formation of homogeneous composites, challenging to the enhancement of dielectric properties of such systems. In this work, we designed novel carbonized polyacrylonitrile/polyethylene glycol copolymer fibers (CPCFs) and then used them as fillers to enhance the dielectric properties of poly(vinylidene fluoride) (PVDF)-based composites. These CPCFs are rich in nitrogen (8.55%) and oxygen (3.94%) atoms on the surface of them. The results of molecular dynamic (MD) simulations indicate that the existence of these atoms significantly increase the interaction energy between CPCFs and PVDF matrix from −45.13 kcal/mol to −62.22 kcal/mol, which promotes the intercalation of conductive CPCFs into insulated PVDF matrix to form ultrathin microcapacitors. As a result, the largest dielectric constant of CPCFs/PVDF composites can reach 1583 (1 kHz), which is about 150 times higher than that of pure PVDF.  相似文献   

8.
Polydimethylsiloxane (PDMS) hybrid composites consisting of exfoliated graphite nanoplatelets (xGnPs) and multiwalled carbon nanotubes functionalized with hydroxyl groups (MWCNTs-OH) were fabricated, and the effects of the xGnP/MWCNT-OH ratio on the thermal, electrical, and mechanical properties of polydimethylsiloxane (PDMS) hybrid composites were investigated. With the total filler content fixed at 4 wt%, a hybrid composite consisting of 75% × GnP/25% MWCNT-OH showed the highest thermal conductivity (0.392 W/m K) and electrical conductivity (1.24 × 10−3 S/m), which significantly exceeded the values shown by either of the respective single filler composites. The increased thermal and electrical conductivity found when both fillers are used in combination is attributed to the synergistic effect between the fillers that forms an interconnected hybrid network. In contrast, the various different combinations of the fillers only showed a modest effect on the mechanical behavior, thermal stability, and thermal expansion of the PDMS composite.  相似文献   

9.
We found that the thermal conductivity of polymer composites was synergistically improved by the simultaneous incorporation of graphene nanoplatelet (GNP) and multi-walled carbon nanotube (MWCNT) fillers into the polycarbonate matrix. The bulk thermal conductivity of composites with 20 wt% GNP filler was found to reach a maximum value of 1.13 W/m K and this thermal conductivity was synergistically enhanced to reach a maximum value of 1.39 W/m K as the relative proportion of MWCNT content was increased but the relative proportion of GNP content was decreased. The synergistic effect was theoretically estimated based on a modified micromechanics model where the different shapes of the nanofillers in the composite system could be taken into account. The waviness of the incorporated GNP and MWCNT fillers was found to be one of the most important physical factors determining the thermal conductivity of the composites and must be taken into consideration in theoretical calculations.  相似文献   

10.
Rapidly increasing packaging density of electronic devices puts forward higher requirements for thermal conductivity of glass fibers reinforced polymer (GFRP) composites, which are commonly used as substrates in printed circuit board. Interface between fillers and polymer matrix has long been playing an important role in affecting thermal conductivity. In this paper, the effect of interfacial state on the thermal conductivity of functionalized Al2O3 filled GFRP composites was evaluated. The results indicated that amino groups-Al2O3 was demonstrated to be effective filler to fabricate thermally conductive GFPR composite (1.07 W/m K), compared with epoxy group and graphene oxide functionalized Al2O3. It was determined that the strong adhesion at the interface and homogeneous dispersion of filler particles were the key factors. Moreover, the effect of interfacial state on dielectric and thermomechanical properties of GFRP composites was also discussed. This research provides an efficient way to develop high-performance GFRP composites with high thermal conductivity for integrated circuit packaging applications.  相似文献   

11.
Polymeric composites with high thermal conductivity, high dielectric permittivity but low dissipation factor have wide important applications in electronic and electrical industry. In this study, three phases composites consisting of poly(vinylidene fluoride) (PVDF), Al nanoparticles and β-silicon carbide whiskers (β-SiCw) were prepared. The thermal conductivity, morphological and dielectric properties of the composites were investigated. The results indicate that the addition of 12 vol% β-SiCw not only improves the thermal conductivity of Al/PVDF from 1.57 to 2.1 W/m K, but also remarkably increases the dielectric constant from 46 to 330 at 100 Hz, whereas the dielectric loss of the composites still remain at relatively low levels similar to that of Al/PVDF at a wider frequency range from 10−1 Hz to 107 Hz. With further increasing the β-SiCw loading to 20 vol%, the thermal conductivity and dielectric constant of the composites continue to increase, whereas both the dielectric loss and conductivity also rise rapidly.  相似文献   

12.
Aluminum oxide and aluminum nitride with different sizes were used alone or in combination to prepare thermally conductive polymer composites. The composites were categorized into two systems, one including composites filled with large-sized aluminum nitride and small-sized aluminum oxide particles, and the other including composites filled with large-sized aluminum oxide and small-sized aluminum nitride. The use of these hybrid fillers was found to be effective for increasing the thermal conductivity of the composite, which was probably due to the enhanced connectivity offered by the structuring filler. At a total filler content of 58.4 vol.%, the maximum values of both thermal conductivities in the two systems were 3.402 W/mK and 2.842 W/mK, respectively, when the volume ratio of large particles to small particles was 7:3. This result was represented when the composite was filled with the maximum packing density and the minimum surface area at the same volume content. As such, the proposed thermal model predicted thermal conductivity in good agreement with experimental values.  相似文献   

13.
A novel thermally conductive plastic composite was prepared from a mixture of silicon nitride (Si3N4) filler particles and an ultrahigh molecular weight polyethylene–linear low density polyethylene blend. The effects of Si3N4 particle sizes, concentration, and dispersion on the thermal conductivity and relevant dielectric properties were investigated. With proper fabrication the Si3N4 particles could form a continuously connected dispersion that acted as the dominant thermally conductive pathway through the plastic matrix. By adding 0–20% Si3N4 filler particles, the composite thermal conductivity was increased from 0.2 to ~1.0 W m?1 K?1. Also, the composite thermal conductivity was further enhanced to 1.8 W m?1 K?1 by decreasing the Si3N4 particle sizes from 35, 3 and 0.2 μm, and using coupling agent, for the composites with higher filler content. Alumina short fibers were then added to improve the overall composite toughness and strength. Optimum thermal, dielectric and mechanical properties were obtained for a fiber-reinforced polyethylene composite with 20% total alumina–Si3N4 (0.2 μm size) filler particles.  相似文献   

14.
Bismaleimide–triazine (BT) resins have received a great deal of attention in microelectronics due to its excellent thermal stability and good retention of mechanical properties. Thereafter, developing BT based composites with high mechanical strength, thermal conductivity and dielectric property simultaneously are highly desirable. In this study, one hybrid fiber of Al2O3 nanoparticle (200 nm) supported on polyimide fiber (Al2O3@PI) with core–shell structure was introduced into BT resin to prepare promising Al2O3@PI–BT composite. The results indicated that the resultant composites possessed high Young’s modulus of 4.06 GPa, low dielectric constant (3.38–3.50, 100 kHz) and dielectric loss (0.0102–0.0107, 100 kHz). The Al2O3@PI hybrid film was also conductive to improve thermal stability (Td5% up to 371 °C), in-plane thermal conductivity (increased by 295% compared to that of the pure BT resin). Furthermore, the Al2O3@PI–BT composite were employed to fabricate a printed circuit substrate, on which a frequency “flasher” circuit and electrical components worked well.  相似文献   

15.
This study investigates the thermal conductivity of epoxy composites containing two hybrid fillers which are multi-walled carbon nanotubes (MWCNTs) and aluminum nitride (AlN). To form a covalent bonds between the fillers and the epoxy resin, poly(glycidyl methacrylate) (PGMA) were grafted onto the surface of nano-sized MWCNTs via free radical polymerization and micro-sized AlN was modified by zirconate coupling agent. Results show that functionalized fillers improve thermal conductivity of epoxy composites, due to the good dispersion and interfacial adhesion, which is confirmed by scanning electron microscope. Furthermore, the hybrid fillers provide synergetic effect on heat conductive networks. The thermal conductivity of epoxy composites containing 25 vol.% modified AlN and 1 vol.% functionalized MWCNTs is 1.21 W/mK, comparable to that of epoxy composites containing 50 vol.% untreated AlN (1.25 W/mK), which can reduce the half quantity of AlN filler used.  相似文献   

16.
Polyimide (PI) composites containing one-dimensional SiC nanowires grown on two-dimensional graphene sheets (1D–2D SiCNWs-GSs) hybrid fillers were successfully prepared. The PI/SiCNWs-GSs composites synchronously exhibited high thermal conductivity and retained electrical insulation. Moreover, the heat conducting properties of PI/SiCNWs-GSs films present well reproducibility within the temperature range from 25 to 175 °C. The maximum value of thermal conductivity of PI composite is 0.577 W/mK with 7 wt% fillers loading, increased by 138% in comparison with that of the neat PI. The 1D SiC nanowires grown on the GSs surface prevent the GSs contacting with each other in the PI matrix to retain electrical insulation of PI composites. In addition, the storage modulus and Young’s modulus of PI composites are remarkably improved in comparison with that of the neat PI.  相似文献   

17.
Multi-walled carbon nanotubes functionalized with amino groups (MWCNT-NH2) were prepared via the chemical modification of the carboxyl groups introduced on the surface of MWCNT. The synthesized materials and untreated micro-aluminum nitride (micro-AlN) particles were embedded in a polymer resin, viz. epoxy-terminated dimethyl siloxane. The thermal diffusivity and conductivity of all of the composites continuously improved with increasing the content of fillers. A thermal conductivity of 3.81 W/mK was achieved at an MWCNT-NH2 loading of 3 wt% and micro-AlN loading of 70 wt% while their flexibility was maintained. This result is due to the high aspect ratio of the MWCNT-NH2 which allows a heat conductive percolation network to be established between the micro-AlN particles. Also, all of the composites fabricated by the optimized process endured about 200,000 bending cycles without rupturing or losing their thermal conductivity.  相似文献   

18.
Polyacrylate composites with various fillers such as multi-walled carbon nanotube (CNT), aluminum flake (Al-flake), aluminum powders and Al–CNT were prepared by a ball milling. The thermal decomposition temperature increased by as much as 64 °C for polyacrylate/Al-flake 70 wt% composite compared to polyacrylate. The thermal conductivity of polyacrylate/Al–CNT composites increased from 0.50 to 1.67 W/m K as the Al–CNT content increases from 50 to 80 wt%. The thermal conductivity of the composite sheet increases with the sheet thickness. At the given filler concentration (90 wt%), the composite filled with aluminum powder of 13 μm has a higher thermal conductivity than the one filled 3 μm powder, and the composite filled with mixture of two powders showed a synergistic effect on the thermal conductivity. The morphology indicates that the dispersion of CNT in the polyacrylate/Al-flake + CNT composite is not perfect, and agglomeration of CNTs was observed.  相似文献   

19.
Graphene with polydopamine (PDA) coating layer which displays promoted dispersibility in organic solvent was prepared through self-polymerization of dopamine onto graphene oxide (GO) and subsequent chemical reduction. The PDA coated reduced GO (RDGO) is homogeneously incorporated into poly(vinylidene fluoride) (PVDF) matrix, which exhibit a percolation threshold at 0.643 wt%. The dielectric constant of PVDF with 0.70 wt% RDGO increases to 176, about 17 times of neat PVDF. Importantly, the loss tangent is suppressed to 0.337 due to reduction of the concentration and mobility of ionizable carboxylic groups by PDA. The enhancement of dielectric constant probably rises from duplex interfacial polarization induced by graphene–semiconductor interface, and semiconductor–insulator interface. The composites displays advantages in excellent dielectric properties and good flexibility and processability guaranteed by low loading of RDGO, which is suitable for the development of dielectric materials for energy storage.  相似文献   

20.
New composites with high dielectric constant and low dielectric loss, based on expanded graphite (EG), CaCuTi4O12 (sCCTO) and cyanate ester (CE) resin, were developed by controlling the interaction between EG and sCCTO. Difference from EG, surface modified EG (mEG) has an additional strong chemical interaction with sCCTO, this not only improves the dispersion of fillers, but also enhances the filler-matrix interfacial adhesion, leading to different micro-structures and dielectric properties. Specifically, the percolation thresholds of mEG/sCCTO/CE and EG/sCCTO/CE composites are 3.45 vol% and 2.86 vol%, respectively. When the loading of conductors approaches the percolation threshold, mEG/sCCTO/CE composite has much higher dielectric constant and lower dielectric loss than EG/sCCTO/CE composite. The nature behind these attractive data was revealed by building an equivalent circuit.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号