首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Fiber-reinforced ceramic matrix composite (FRCMC) have been widely used in aerospace and other high-technology fields due to their excellent mechanical and physical properties. However, FRCMC is a kind of typical material with anisotropic and inhomogeneous structure; thus, it is difficult to guarantee the precision and surface quality using traditional machining. The present paper employed ultrasonic vibration-assisted grinding (UAG) to machine 2.5D woven SiO2f/SiO2 composites. By comparing the grinding force, surface microstructure, chip formation, surface topography and surface roughness with and without ultrasonic vibration for the machining of SiO2f/SiO2 composites, the feasibility of UAG on FRCMC was investigated experimentally. In addition, the effects of the process parameters (including spindle speed, feed rate, grinding depth, grain mesh size and ultrasonic power) on grinding force and surface roughness were studied through an orthogonal experiment. The research obtained can be a useful technical support for the development of UAG in the machining of FRCMC.  相似文献   

2.
Comparative study of high temperature composites   总被引:5,自引:0,他引:5  
Two classes of composite made using either ceramic matrix with high temperature fibers or carbon/carbon have been used for various applications that require high temperature resistance, over three decades. However, their use has been limited to special applications because of the high costs associated with fabrication. Typically the composites are cured at more than 1000°C, and in most instances the heating has also to be carried out in controlled environments. In addition, because of the high processing temperature, only certain type of expensive fibers can be used with the ceramic matrices. A recently developed inorganic matrix, called polysialate can be cured at temperatures less than 150°C, making it possible to use carbon and glass fibers. Composites made using carbon, glass and combinations of carbon and glass fibers have been tested in bending and tension. This paper presents the comparison of processing requirements and mechanical properties of carbon/carbon composites, ceramic matrix composites made with silicon carbide, silicon nitride and alumina fibers and carbon/polysialate composites. The results indicate that carbon/polysialate composite has mechanical properties comparable to both carbon/carbon and ceramic matrix composites at room and high temperatures. Since the polysialate composites are much less expensive, the authors believe that it has excellent potential for more applications in aerospace, automobile and naval structures.  相似文献   

3.
Ceramic matrix composites have complex structures. For exploring the impact factors of machined surface quality and material removal mechanism, its internal structure must be decoupled, and then a unidirectional C/SiC composite was designed and fabricated in this paper. Through a series of representative surface grinding experiments, the machined surface of the composites was characterized by 3D profile test, and the microscopic characteristics and material removal mechanism of the grinding surface were discussed in detail. The results showed that the fiber orientation had a significant effect on the surface quality, and the order of 3D surface roughness was longitudinal > normal > transverse. On the basis of the systematic analysis of the microscopic characteristics of the machined surface, the brittle fracture was the dominant form of material removal in grinding process. Further, combined with 3D surface profile and surface micromorphology, the effect of fiber orientation on the removal mechanism of composites was revealed. The results not only enrich the machinability and improve the surface quality of unidirectional C/SiC composites, but also provide some guidance for grinding of the woven composites.  相似文献   

4.
The mechanical behavior of unidirectional fiber-reinforced polymer composites subjected to tension and compression perpendicular to the fibers is studied using computational micromechanics. The representative volume element of the composite microstructure with random fiber distribution is generated, and the two dominant damage mechanisms experimentally observed – matrix plastic deformation and interfacial debonding – are included in the simulation by the extended Drucker–Prager model and cohesive zone model respectively. Progressive failure procedure for both the matrix and interface is incorporated in the simulation, and ductile criterion is used to predict the damage initiation of the matrix taking into account its sensitivity to triaxial stress state. The simulation results clearly reveal the damage process of the composites and the interactions of different damage mechanisms. It can be concluded that the tension fracture initiates as interfacial debonding and evolves as a result of interactions between interfacial debonding and matrix plastic deformation, while the compression failure is dominated by matrix plastic damage. And then the effects of interfacial properties on the damage behavior of the composites are assessed. It is found that the interfacial stiffness and fracture energy have relatively smaller influence on the mechanical behavior of composites, while the influence of interfacial strength is significant.  相似文献   

5.
纤维增强复合材料具有优良的物理、化学和力学性能,在航空航天、汽车、新能源等高新技术领域应用广泛。相比传统钻铣刀具,磨料工具在纤维增强复合材料制孔时,加工后的分层、毛刺、撕裂及热损伤等缺陷更小,且磨料工具可以稳定加工硬度更高的纤维增强陶瓷基复合材料。首先,综述了纤维增强复合材料在磨削制孔过程中的切屑形成、磨削轴向力、磨削温度等磨削加工机制;其次,探讨了近年来国内外在纤维增强复合材料磨削制孔技术中的制孔加工缺陷及其评价方法;然后,分析了纤维增强复合材料磨削制孔质量及其影响因素;此外,综述了纤维增强复合材料磨削制孔刀具及其磨损机制等方面的研究现状;最后,对纤维增强复合材料磨削制孔加工技术研究进行了总结和展望。   相似文献   

6.
In this work, we analyze the influence of different fiber surface treatments on the mechanical properties of plain weave composites. The reinforcement is a glass fibers fabric and the matrix is an acrylic polymer. Until very recently, this thermoplastic polymer family was not used in composite industry. It is therefore necessary to study if the existing fiber surface treatments are suitable for acrylic resins or if new ones have to be found. At the macroscale, composite materials corresponding to different fiber surface treatments were characterized with: (i) monotonic in-plane shear tests and (ii) heat-build up fatigue measurements on specimens with ±45° fiber orientations with respect to the tensile force. At the mesoscale (fabric scale), the development of damage was experimentally analyzed from (i) 3-D DIC (Digital Image Correlation) full-field strain measurements with spatial resolution smaller than the textile repeating unit and (ii) X-ray microtomography. We show that the analyzed composite materials exhibit linear viscoelastic behavior until a given stress threshold above which damage develops in the material. It was also found that the application on the fibers of a coupling agent specifically developed for promoting the bond between glass fibers and acrylic resins improves the composite mechanical properties, in particular the fatigue properties.  相似文献   

7.
The intermetallic compound NiAl has excellent potential for high temperature structural applications but suffers from low temperature brittleness and insufficient high temperature strength. One way to remove these deficiencies is the reinforcement by high strength ceramic fibers. Such intermetallic matrix composites can be conveniently fabricated by the hot pressing of matrix coated fibers. Al2O3 single crystal fibers show excellent chemical stability with the NiAl matrix, but the residual thermal compressive stresses during cool down dramatically degrades the fiber strength and thus, renders the composite useless for structural applications. We report on an experimental and computational study to mitigate this problem and to fabricate Al2O3/NiAl composites with sufficient high temperature strength. Analytical TEM, mechanical testing and push-out tests were employed to characterize chemistry, microstructure and mechanical properties of the composites. It will be shown that a processing window exists that allows producing intermetallic matrix composites with promising mechanical properties.  相似文献   

8.
We report an in situ analysis of the microstructure of woven composites using carbon nanotube (CNT)-based conductive networks. Two types of specimens with stacking sequences of (0/90)s (on-axis) and (22/85/−85/−22) (off-axis) were manufactured using ultra-high-molecular-weight polyethylene fibers and a CNT-dispersed epoxy matrix via vacuum-assisted resin transfer molding. The changes in the electrical resistance of the woven composites in response to uniaxial loading corresponded to the changes in the gradient of the stress–strain curves, which is indicative of the initiation and accumulation of microscopic cracking and delamination. The electrical resistance of the woven composites increased due to both elongation and microscopic damage; interestingly, however, it decreased beyond a certain strain level. In situ X-ray computed tomography and biaxial loading tests reveal that this transition is due to yarn compaction and Poisson’s contraction, which are manifest in textile composites.  相似文献   

9.
Dense BaSi2Al2O8 (BAS) and Ba0.75Sr0.25Si2Al2O8 (BSAS) glass–ceramic matrix composites reinforced with carbon short fibers (Csf) were fabricated by hot pressing technique. The microstructure, mechanical properties and fracture behavior of the composites were investigated by X-ray diffraction, scanning and transmission electron microscopies, and three-point bend tests. The carbon fibers had a good chemical compatibility with the glass–ceramic matrices and can effectively reinforce the BAS (or BSAS) glass–ceramic because of associated toughening mechanisms such as crack deflection, fiber bridging and pullout effects. Doping of BAS with 25 mol% SrSi2Al2O8 (SAS) can accelerate the hexacelsian to celsian transformation and result in the formation of pure monoclinic celsian in Csf/BSAS composites, which can avoid the undesirable reversible hexacelsian to orthorhombic transformation at 300 °C and reduce the thermal expansion mismatch between the fiber and matrix.  相似文献   

10.
The aim of this investigation was to study a new family of wood polymer composites with thermoplastic elastomer matrix (pebax® copolymers) instead of commonly used WPC matrices. These copolymers are polyether-b-amide thermoplastic elastomers which present an important elongation at break and a melting point below 200 °C to prevent wood fibers degradation during processing. Moreover these polymers are synthesized from renewable resources and they present a hydrophilic character which allow them to interact with wood fibers. We have used two pebax® grade with different hardness and three types of wood fibers, so the influence of the matrix and wood fibers characteristics were evaluated. Composites were produced using a laboratory-size twin screw extruder to obtain composite pellets prior to injection moulding into tensile test samples. We have evaluated fibers/matrix interaction by differential scanning calorimetry (DSC), infrared spectroscopy (IRTF) and scanning electron microscopy (SEM). Then, the mechanical properties, through tensile test, were assessed. We also observed fibers dispersion into the matrix by tomography X. DSC, IRTF and SEM measurements confirmed the presence of strong interface interactions between polymer and wood. These interactions lead to good mechanical properties of the composites with a reinforcement effect of wood fibers due also to a good dispersion of fibers into the matrix without agglomerate.  相似文献   

11.
Mechanical behavior of multi-phase composites is crucially influenced by volume fractions, orientation distributions and geometries of microconstituents. In the case of carbon–carbon composites manufactured by chemical vapor infiltration, the microconstituents are carbon fibers, pyrolytic carbon matrix, and pores. The local variable thickness of the pyrolytic carbon coating, distribution of the fibers and porosity are the main factors influencing the properties of these materials. Two types of fiber arrangements are considered in this paper: 2D laminated preform and random felt. The materials are characterized by determining their densities and their fiber distribution functions, by establishing types of pyrolytic carbon matrix present in the composites, and by studying the porosity. A technique utilizing X-ray computed tomography for estimation of the orientation distribution of the fibers and pores with arbitrary shapes is developed. A methodology based on the processing of microstructure images with subsequent numerical simulation of the coating growth around the fibers is proposed for estimation of the local thickness of the coating. The obtained information is appropriate for micromechanical modeling and prediction of the overall thermo-mechanical properties of the studied composites.  相似文献   

12.
An approach to estimate the fiber/matrix interface shear stress of woven ceramic matrix composites during fatigue loading has been developed in this paper. Based on the analysis of the microstructure, the woven ceramic matrix composites were divided into four elements of 0o warp yarns, 90o weft yarns, matrix outside of the yarns and the open porosity. When matrix cracking and fiber/matrix interface debonding occur upon first loading to the peak stress, it is assumed that fiber slipping relative to matrix in the interface debonded region of the 0o warp yarns is the mainly reason for the occurrence of the hysteresis loops of woven ceramic matrix composiets during unloading and subsequent reloading. The unloading interface reverse slip length and reloading interface new slip length are determined by the interface slip mechanisms. The hysteresis loops of three different cases have been derived. The hysteresis loss energy for the strain energy lost per volume during corresponding cycle is formulated in terms of the fiber/matrix interface shear stress. By comparing the experimental hysteresis loss energy with the computational values, the fiber/matrix interface shear stress of woven ceramic matrix composites corresponding to different cycles can then be derived. The theoretical results have been compared with experimental data of two different woven ceramic composites.  相似文献   

13.
In this work, we studied the influence of surface functionality of multi-walled carbon nanotubes (MWCNTs) on the mechanical properties of basalt fiber-reinforced composites. Acid and base values of the MWCNTs were determined by Boehm's titration technique. The surface properties of the MWCNTs were determined FT-IR, and XPS. The mechanical properties of the composites were assessed by measuring the interlaminar shear stress, fracture toughness, fracture energy, and impact strength. The chemical treatments led to a change of the surface characteristics of the MWCNTs and of the mechanical interfacial properties of MWCNTs/basalt fibers/epoxy composites. Especially the acid-treated MWCNTs/basalt fibers/epoxy composites had improved mechanical properties compared to the base-treated and non-treated MWCNTs/basalt fibers/epoxy composites. These results can probably be attributed to the improved interfacial bonding strength resulting from the improved dispersion and interfacial adhesion between the epoxy resin and the MWCNTs.  相似文献   

14.
Natural-fibre-reinforced polyurethane microfoams   总被引:5,自引:0,他引:5  
Polyurethane-based composites reinforced with woven flax and jute fabrics were prepared with an evenly distributed microvoid foam structure. The relationship between the resin-filled grade and the microvoid content and the density was described. The influence of the type of reinforcing fibre, fibre and microvoid content on the mechanical properties was studied. The investigation results for the static mechanical properties of the composites were described by approximate formulae. It was found that the specific data were only slightly dependent on microvoid content. Increasing the fibre content induces an increase in the shear modulus and impact strength. However, increasing the microvoid content in the matrix results in a decreased shear modulus and impact strength. The woven flax fibre results in composites with better mechanical strength than the woven jute fibre composites.  相似文献   

15.
Carbon nanotube (CNT)-grafted carbon fibers (CFs) have emerged as new reinforcements for improving the mechanical properties of CF-reinforced composites but such enhancement in macroscale composites has not been realized. This paper reports a facile method for preparing CNT-grafted CFs and improving the tensile strength of their composites. A CNT/polyacrylonitrile solution was sprayed onto the surface of the CF woven fabrics, and the CNTs were grafted by a thermal treatment at 300 °C. CNT-grafted CF composites were fabricated using the CNT-grafted CF woven fabrics using a vacuum-assisted resin transfer molding process with epoxy resin. The CNT-grafted CF composite exhibited 22% enhancement in the tensile strength compared to that of the pristine CF composite. Fracture surfaces of the CNT-grafted CF composites showed that the grafted CNTs obstructed the propagation of micro-cracks and micro-delamination around the CFs and also yarn boundaries, resulting in improved tensile strength of CNT-grafted CF composites.  相似文献   

16.
先驱体转化法制备SiC纤维的研究进展   总被引:1,自引:0,他引:1  
先驱体法制备的SiC纤维是高性能陶瓷基复合材料(CMC)的关键增强材料. 在过去三十年里, 已发展了三代SiC纤维. 本文综述了三代SiC纤维制备工艺、组成结构和性能的发展变化情况, 分析了SiC纤维的耐高温、抗氧化、模量和高温抗蠕变性能与其组成和结构的相互关系, 总结了提高纤维性能的主要方法.  相似文献   

17.
The intermetallic compound NiAl has excellent potential for high temperature structural applications but suffers from low temperature brittleness and insufficient high temperature strength. One way to remove these deficiencies is the reinforcement by high strength ceramic fibers. Such intermetallic matrix composites can be conveniently fabricated by the hot pressing of matrix coated fibers. Al2O3 single crystal fibers show excellent chemical stability with the NiAl matrix, but the residual thermal compressive stresses during cool down dramatically degrades the fiber strength and thus, renders the composite useless for structural applications. We report on an experimental and computational study to mitigate this problem and to fabricate Al2O3/NiAl composites with sufficient high temperature strength. Analytical TEM, mechanical testing and push-out tests were employed to characterize chemistry, microstructure and mechanical properties of the composites. It will be shown that a processing window exists that allows producing intermetallic matrix composites with promising mechanical properties.  相似文献   

18.
Self-reinforced polymer composites are gaining increasing interest due to their higher ductility compared to traditional glass and carbon fibre composites. Here we consider a class of PET composites comprising woven PET fibres in a PET matrix. While there is a significant literature on the development of these materials and their mechanical properties, little progress has been reported on constitutive models for these composites. Here we report the development of an anisotropic visco-plastic constitutive model for PET composites that captures the measured anisotropy, tension/compression asymmetry and ductility. This model is implemented in a commercial finite element package and shown to capture the measured response of PET composite plates and beams in different orientations to a high degree of accuracy.  相似文献   

19.
In this work, kenaf fibers were pre-treated in a NaOH solution (6% in weight) at room temperature for two different periods (48 and 144 h). The chemical treatment of kenaf fibers for 48 h allowed to clean their surface removing each impurity whereas 144 h of immersion time had detrimental effect on the fibers surface and, consequently, on their mechanical properties.Untreated and NaOH treated kenaf fibers (i.e. for 48 h) were also used as reinforcing agent of epoxy resin composites. The effect of the stacking sequence (i.e. using unidirectional long fibers or randomly oriented short fibers) and the chemical treatment on the static mechanical properties was evaluated showing that the composites exhibit higher moduli in comparison to the neat resin. As regards the strength properties, only the composites reinforced with unidirectional layers show higher strength than the neat resin. Moreover, the alkali treatment increased the mechanical properties of the composites, due to the improvement of fiber–matrix compatibility.The dynamic mechanical analysis showed that the storage and the loss moduli are mainly influenced by the alkali treatment above the glass transition temperature. Moreover, the alkali treatment led to a notable reduction of tan δ peaks in addition to significant shifts of tan δ peaks to higher temperatures whereas the stacking sequence did not influence the trends of storage modulus, loss modulus and damping of the composites.  相似文献   

20.
碳纤维复合材料界面结构的形貌与尺寸的表征   总被引:4,自引:1,他引:3  
为了准确测定碳纤维增强树脂基复合材料界面结构的形貌和尺寸, 本文中介绍了一种原位纳米力学动态模量成像技术, 并采用该方法对碳纤维增强热固性树脂基复合材料进行了测试, 对该技术在界面结构测试上的参数设置、 数据处理方法以及适用性等方面进行了分析。研究表明, 该方法的横向分辨率可以达到纳米尺度, 适于测量界面尺寸在纳米级别的碳纤维复合材料界面形貌与尺寸。对于碳纤维/环氧树脂和碳纤维/双马树脂体系, 界面区的储能模量呈梯度变化, 根据储能模量成像图的统计分析可得到界面的形貌和厚度。所得界面平均厚度在100nm左右, 横截面上界面形貌呈不均匀的“河流状”, 并与碳纤维表面形貌相似。   相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号