首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到10条相似文献,搜索用时 15 毫秒
1.
用改进的Hummers法,通过热还原快速制备石墨烯电极材料。用XRD、FT-IR、SEM和比表面积测试分析样品的物相组成和微观形貌;用恒流充放电、循环伏安和电化学阻抗谱(EIS)技术研究样品的双电层电容性能。样品具有纳米片层结构,以200 mA/g和300 mA/g的电流在0.1~2.7 V充放电,放电比电容分别为124.56 F/g和103.54 F/g;以5~100 mV/s的扫描速率进行循环伏安测试,石墨烯电极表现出良好的双电层电容性能。  相似文献   

2.
采用溶剂热法制备了不同质量比的石墨烯/Bi_2O_3复合材料。经X射线衍射(XRD)、场发射扫描电镜(FESEM)等表征了产物的组成、结构和形貌;通过循环伏安、恒电流充放电和交流阻抗对复合材料的电化学性能进行了研究。结果表明:所合成石墨烯/Bi_2O_3复合材料分散均匀,电化学性能优异,内阻较小。当氧化石墨与Bi_2O_3质量比为1∶1时,电化学性能最佳;在1 A/g电流密度下,比电容达到了753 F/g;10 A/g电流密度下,电容保持率高达87%,具有良好的倍率性;在2 A/g电流密度下经1 000次充放电循环,比电容保持率为71%。  相似文献   

3.
以KMnO4和MnCl2为原料并添加一定量的SnCl4,采用常压回流液相共沉淀法合成了Sn改性MnO2电极材料。利用X射线衍射光谱法(XRD)、扫描电子显微镜法(SEM)和电化学方法对其进行物理表征和电化学性能研究。结果表明反应溶液pH值对MnO2的结构、形貌和电化学性能影响很大。反应溶液为酸性和碱性时分别得到γ-MnO2和δ-MnO2。在pH=9时制备的Sn改性MnO2具有良好的电容性能,在0.5 A/g下,比电容达到176 F/g,比未改性MnO2提高了66%,电流密度增大到2.0 A/g时,比电容依然保持在166 F/g。在1.0 A/g下进行连续充放电测试,1 000次充放电循环后,比电容仍保持在165 F/g,容量衰减小于6%。Sn改性MnO2是一种理想的超级电容器电极材料,具有良好的高倍率充放电性能和容量保持能力。  相似文献   

4.
用天然鳞片石墨为原料,通过改进的Hummers法氧化、离心分离、热还原和超声剥离处理制备出了高品质的石墨烯片。采用透射电镜、高分辨透射电镜、傅里叶变换红外光谱、拉曼光谱、X-射线衍射等测试方法对石墨烯的结构和形貌进行了研究。通过恒流充放电、循环伏安法和交流阻抗等手段研究了石墨烯用作超级电容器电极材料的电化学性能,在0.02 A/g电流密度下的比容量为244 F/g。在0.1 A/g的电流密度下石墨烯超级电容器经过500个循环后比容量保持在198 F/g,表明石墨烯电极材料具有优异的循环稳定性。  相似文献   

5.
采用电化学还原法成功将氧化石墨烯还原,得到具有一定柔性的石墨烯膜。利用扫描电子显微镜法(SEM)、透射电子显微镜法(TEM)、拉曼光谱、X射线光电子光谱法(XPS)等测试手段对石墨烯材料的结构和形貌进行了表征;结果表明,所制备的石墨烯形貌较好、表面平整、无褶皱;通过测试其电化学性能对其还原电位、膜层厚度等制备条件进行了优化;当伏安循环电压范围为-2.0~2.0 V、膜厚度为1μm时,得到的石墨烯膜电化学性能优异,电流密度为0.1 A/g时,比电容可以达到123.8 F/g。  相似文献   

6.
采用一步水热法制备出Co8FeS8/氮掺杂石墨烯复合材料.用X射线衍射(XRD)、扫描电镜(SEM)和显微共焦拉曼对材料结构、形貌进行表征;通过循环伏安、恒电流充放电以及交流阻抗对材料的电化学性能进行测试.结果表明:在1 A/g的电流密度下比电容为691.2 F/g;在电流密度为5 A/g下,经5000次循环后,电容保...  相似文献   

7.
采用电化学沉积法,以碳纳米管(CNT)为基体沉积Ni(OH)2,热处理制备NiO/CNT复合电极.采用XRD、SEM、TEM、循环伏安和恒流充放电,研究了电沉积电流密度对复合电极的影响.沉积电量为9 C时,随着电流密度的增加,NiO易沉积在电极表面,形成块体并阻塞离子通道,使复合电极的比电容下降.以1 mA/cm2制备的复合电极,以0.4 A/g、20.0 A/g充放电时,比电容分别为1 686 F/g和926 F/g.  相似文献   

8.
以氧化石墨烯(GO)、石墨相氮化碳(g-C_3N_4)为前驱体,分别采用水热法、微波法、煅烧法制备石墨烯(RGO)/g-C_3N_4复合材料。通过X射线衍射(XRD)、扫描电子显微镜(SEM)、傅里叶转换红外光谱(FT-IR)和热重(TG)等测试手段表征材料的表面微观结构和还原程度,采用循环伏安(CV)、恒流充放电(GCD)及电化学交流阻抗(EIS)测试复合材料的电化学性能。结果表明:以煅烧法制备的复合材料,结晶度较高,孔结构分布均匀,复合材料循环稳定性较好,当电流密度为0.2 A/g时,电极材料的比电容为724.53 F/g,显现出良好的电化学性能。  相似文献   

9.
曾昭锋 《电源技术》2023,(6):772-775
采用一步水热法和煅烧法制备了Co3O4电极材料,通过物相、形貌表征和电化学测试发现,制备的Co3O4具有羽毛状二维网络结构,可以增加与电解液的接触面积,增加了活性位点,提高了电化学性能;制备的Co3O4电极材料的比电容达到了679.51 F/g,其循环伏安测试曲线以及恒电流充放电测试曲线对称性完美,材料可逆性良好,材料的阻抗较低;在1 A/g电流密度下进行恒电流充放电测试,3 000次循环后,其比电容仍然能保持初始值的79.3%,电化学稳定性良好;Co3O4电极材料具有优异的电化学性能,在超级电容器电极应用方面具有广阔的应用前景。  相似文献   

10.
通过化学沉淀法,将氧化石墨烯与硫酸镍、过硫酸铵、氨水反应,制备出Ni(OH)_2/GO复合材料。通过X射线衍射仪(XRD)、扫描电子显微镜(SEM)以及傅里叶变换红外光谱(FT-IR)对样品的结构和形貌进行表征,并使用循环伏安法(CV)、恒电流充放电法研究了样品的电化学性能。结果表明:Ni(OH)_2/GO复合材料呈现为大小不等的薄片状结构。作为电极材料,复合材料表现出优良的电化学性能,在1.0A/g的电流密度下,比电容达到476F/g,比纯Ni(OH)_2的比电容(387F/g)高出约20%。制备的Ni(OH)_2/GO复合电极材料适合作为超级电容器的电极材料。该方法提供了一种简单而温和的途径将氢氧化镍分散在氧化石墨烯的表面上,可用于能量存储和转换装置中其它金属氢氧化物/GO复合材料的制备。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号