首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到10条相似文献,搜索用时 31 毫秒
1.
Al_2O_3陶瓷/钢钎焊工艺   总被引:1,自引:1,他引:0       下载免费PDF全文
张万红  李宁 《焊接学报》2010,31(11):97-100
陶瓷与金属的连接广泛应用于航空航天、电子、仪器仪表、燃料电池等领域.采用活性钎料Cu70Ti30,Cu75Ti25,Cu80Ti20和Cu85Ti15对Al2O3陶瓷与Q235钢进行了真空钎焊.测量了各试样的抗弯强度和界面区的显微硬度.结果表明,Cu75Ti25是最佳钎料配比,钎焊温度1 100℃,保温时间20 min是最佳的钎焊工艺,该工艺下钎料充分熔化填充接头间隙并与陶瓷和钢侧相互扩散,形成由3层不同组织所构成的界面结合区,即液态钎料填充陶瓷微孔形成的反应层、Ti-Cu合金层以及钢侧扩散层;在界面结合区生成有AlCu4,Cu3TiO4,TiC,TiFe2等新相;界面结合区组织致密、无微孔等缺陷,实现了良好的冶金结合.  相似文献   

2.
用Cu-Ti活性钎料对Al2O3陶瓷/碳钢实施钎焊,用透射电镜、扫描电镜、能谱仪和X射线衍射仪对界面微观结构进行表征,研究了钎焊温度1050℃、不同保温时间(10~40 min)对接头界面微观结构和剪切强度的影响。结果表明,保温30 min得到的钎焊接头具有较好的界面组织形态和较高的剪切强度。在此工艺条件下界面结合区有3层组成,即近陶瓷侧以Ti4Fe2O为主的反应层,近钢侧以Ti Fe2为主要析出相的扩散层,在反应层和扩散层之间为Cu固溶体+Ti4Fe2O相,各层组织比较致密,微孔缺陷较少,接头剪切强度达到99 MPa。  相似文献   

3.
采用Ti-Zr-Ni-Cu钎料对SiC陶瓷进行了真空钎焊,研究了SiC陶瓷真空钎焊接头的界面显微组织和界面形成机理.试验中采用扫描电子显微镜(SEM)对接头组织进行了观察,并进行了局部能谱分析.结果表明,接头界面产物主要有TiC,Ti5Si3,Zr2Si,Zr(s,s),Ti(s,s)+Ti2(Cu,Ni)和(Ti,Zr)(Ni,Cu)等.接头的界面结构可以表示为:SiC/TiC/Ti5Si3+Zr2Si/Zr(s,s)/Ti(s,s)+Ti2(Cu,Ni)/(Ti,Zr)(Ni,Cu).钎焊过程分为五个阶段:钎料与母材的物理接触;钎料熔化和陶瓷侧反应层开始形成;钎料液相向母材扩散、陶瓷侧反应层厚度增加,钎缝中液相成分均匀化;陶瓷侧反应层终止及过共晶组织形成;钎缝中心金属间化合物凝固.在钎焊温度960℃,保温时间10 min时,接头抗剪强度可达110 MPa.  相似文献   

4.
采用自行设计制备的Cu-Sn-Ti-Ni活性粉末钎料,在钎焊温度890~930℃,保温时间5~20 min的条件下,对Al2O3陶瓷与Cr12钢进行真空钎焊试验,利用扫描电镜和能谱分析对钎焊界面的微观组织进行了分析。结果表明:钎料与两侧母材润湿良好并形成良好的冶金界面结合;钎焊过程中,钢母材中的Fe元素向钎料层中扩散,钎料中的Ti元素向母材两侧扩散并聚集,在钎料层钢母材侧生成Ti Fe2和Ti C化合物。对接头抗剪强度的分析结果表明,在钎焊温度890℃、保温时间10 min的条件下,接头的抗剪强度最高,达118 MPa。  相似文献   

5.
采用Ti-Zr-Ni-Cu钎料对SiC陶瓷进行了真空钎焊,研究了SiC陶瓷真空钎焊接头的界面显微组织和界面形成机理.试验中采用扫描电子显微镜(SEM)对接头组织进行了观察,并进行了局部能谱分析.结果表明,接头界面产物主要有TiC,Ti5Si3,Zr2Si,Zr(s,s),Ti(s,s)+Ti2(Cu,Ni)和(Ti,Zr)(Ni,Cu)等.接头的界面结构可以表示为:SiC/TiC/Ti5Si3+Zr2Si/Zr(s,s)/Ti(s,s)+Ti2(Cu,Ni)/(Ti,Zr)(Ni,Cu).钎焊过程分为五个阶段:钎料与母材的物理接触;钎料熔化和陶瓷侧反应层开始形成;钎料液相向母材扩散、陶瓷侧反应层厚度增加,钎缝中液相成分均匀化;陶瓷侧反应层终止及过共晶组织形成;钎缝中心金属间化合物凝固.在钎焊温度960℃,保温时间10 min时,接头抗剪强度可达110 MPa.  相似文献   

6.
对270℃条件下Sn-Zn钎料/Cu基板焊点界面反应进行了热力学计算与分析,并利用SEM、EDS、XRD及显微硬度计对焊点界面进行了检测与分析。结果表明:界面Cu基板侧金属间化合物(IMC)CuZn层的形成是自发的,钎料侧形成的CuZn持续与扩散过来的Zn原子反应生成Cu5Zn8;Cu原子越过界面IMC层向钎料中的扩散与聚集呈现"脉动"形式,在临近结合面的钎料中形成粒状Cu5Zn8 IMC,并造成靠近界面区钎料中的Zn元素含量呈现间隔的"减少-聚集"现象;界面IMC层未造成焊点界面硬度突变。  相似文献   

7.
通过向Ag Cu共晶钎料中添加nano-Al2O3增强相(2%,质量分数)并采用高能球磨的方法获得了Ag Cu+nano-Al2O3复合钎料(Ag Cu C钎料)。采用Ag Cu C钎料实现了TC4合金与Al2O3陶瓷的高质量钎焊连接,确定了TC4/Ag Cu C/Al2O3钎焊接头的典型界面组织结构为:TC4/α-Ti+Ti2Cu扩散层/Ti3Cu4层/Ag(s,s)+Ti3Cu4+Ti Cu/Ti3Cu4层/Ti3(Cu,Al)3O层/Al2O3。Nano-Al2O3的添加抑制了钎缝中连续的Ti-Cu化合物层的生长,同时在钎缝中形成了颗粒状Ti-Cu化合物相增强的Ag基复合材料,改善了钎焊接头的界面组织。随着钎焊温度的升高,各反应层厚度逐渐增加,颗粒状Ti-Cu化合物不断长大,Ag基复合材料组织逐渐细小。当钎焊温度T=920℃,保温时间t=10 min时接头抗剪强度达到最大为67.8 MPa,典型断口分析表明:压剪过程中,裂纹起源于钎角处并沿钎缝扩展后转入Al2O3陶瓷,最终在Al2O3陶瓷母材侧发生断裂。  相似文献   

8.
通过在Ag-26Cu-5Ti钎料中添加21. 5%In,设计开发了一种新型Ag Cu In Ti合金钎料,用于实现Al2O3陶瓷与无氧铜的活性连接,同时改善流动性,提高活性。对钎料的固液相温度与润湿铺展性能进行分析,并测试了Al_2O_3/Ag Cu In Ti/Cu试验件抗拉强度和气密性。通过金相显微镜、扫描电子显微镜观察试验件微观界面组织,进一步探究Ag Cu In Ti合金钎料的活性连接反应机理。结果表明,Ag Cu In Ti合金钎料在750℃实现了对陶瓷和金属的真空活性连,降低了钎焊温度,满足分级钎焊和补焊的需求,且形成结合紧密的反应界面,证明其对陶瓷具有良好的润湿性;钎焊过程中合金钎料中的Ti元素向Al_2O_3陶瓷界面富集,形成多个界面产物,而合金钎料中Ag元素、Cu元素、In元素与无氧铜发生溶解扩散,生成新的化合物相,最终实现陶瓷与金属的冶金结合。  相似文献   

9.
兼具陶瓷与金属优异性能的复合构件的连接一直是材料的研究热点。本课题采用活性钎料AgCuTi钎焊了Al_2O_3陶瓷和GH99高温合金接头,并分析了接头的界面结构以及界面形成的机理,研究了钎焊温度和保温时间对接头组织结构的影响,得出了以下结论:接头连接完好,钎焊界面中无孔洞、裂纹等缺陷,接头典型界面组织结构为GH99/TiNi_3/Cu(s,s)+Ag(s,s)/Cu_3Ti_3O(Ti(O)_(3x))/Al_2O_3;连接温度升高,钎料与两侧母材的反应作用加剧,GH99侧的TiNi_3反应层增厚,且延伸进钎料中部,而陶瓷侧未观察到明显的反应层,但陶瓷与钎料相互扩散得更充分;随着保温时间的延长,GH99侧TiNi_3反应层的厚度增厚明显,保温时间较长时该反应层中产生微裂纹,而Al_2O_3陶瓷侧的连接则更为致密。  相似文献   

10.
研究了CuSiAlTi钎料对SiC陶瓷的润湿性。发现元素Ti显著影响钎料对SiC陶瓷的润湿性。采用SEM,XRD对润湿界面进行了观察分析,发现在界面上存在1个含TiC的很薄的界面层和含Cu较多、含Ti元素较少的较厚的界面过渡层。分析表明,在润湿过程中钎料中的元素与SiC陶瓷中的Si,C相互扩散,Cu元素在SiC陶瓷一侧是主要的扩散元素,Cu的扩散在SiC陶瓷一侧形成了较厚的扩散层。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号