首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Shape memory acrylamide/DNA hydrogels include two different crosslinkers as stabilizing elements. The triggered dissociation of one of the crosslinking elements transforms the shaped hydrogel into an arbitrarily shaped (or shapeless) quasi‐liquid state. The remaining crosslinking element, present in the quasi‐liquid, provides an internal memory that restores the original shaped hydrogel upon the stimulus‐triggered regeneration of the second crosslinking element. Two pH‐sensitive shape memory hydrogels, forming Hoogsten‐type triplex DNA structures, are described. In one system, the shaped hydrogel is stabilized at pH = 7.0 by two different duplex crosslinkers, and the transition of the hydrogel into the shapeless quasi‐liquid proceeds at pH = 5.0 by separating one of the crosslinking units into a protonated cytosine–guanine–cytosine (C–G·C+ ) triplex. The second shaped hydrogel is stabilized at pH = 7.0, by cooperative duplex and thymine–adenine–thymine triplex (T–A·T) bridges. At pH = 10.0, the triplex units separate, leading to the dissociation of the hydrogel into the quasi‐liquid state. The cyclic, pH‐stimulated transitions of the two systems between shaped hydrogels and shapeless states are demonstrated. Integrating the two hydrogels into a shaped “two‐arrowhead” hybrid structure allows the pH‐stimulated cyclic transitions of addressable domains of the hybrid between shaped and quasi‐liquid states.  相似文献   

2.
Despite advances in the development of silk fibroin (SF)‐based hydrogels, current methods for SF gelation show significant limitations such as lack of reversible crosslinking, use of nonphysiological conditions, and difficulties in controlling gelation time. In the present study, a strategy based on dynamic metal‐ligand coordination chemistry is developed to assemble SF‐based hydrogel under physiological conditions between SF microfibers (mSF) and a polysaccharide binder. The presented SF‐based hydrogel exhibits shear‐thinning and autonomous self‐healing properties, thereby enabling the filling of irregularly shaped tissue defects without gel fragmentation. A biomineralization approach is used to generate calcium phosphate‐coated mSF, which is chelated by bisphosphonate ligands of the binder to form reversible crosslinkages. Robust dually crosslinked (DC) hydrogel is obtained through photopolymerization of acrylamide groups of the binder. DC SF‐based hydrogel supports stem cell proliferation in vitro and accelerates bone regeneration in cranial critical size defects without any additional morphogenes delivered. The developed self‐healing and photopolymerizable SF‐based hydrogel possesses significant potential for bone regeneration application with the advantages of injectability and fit‐to‐shape molding.  相似文献   

3.
The present study reports the synthesis of poly(2‐isopropenyl‐2‐oxazoline) (PiPOx) dual‐crosslinked hydrogels by both covalent and physical (i.e., metal–ligand coordination) interactions. First, chemical crosslinking of a modified PiPOx polymer containing terpyridine (TPy) unit is achieved by reacting with azelaic acid (non‐anedioic acid). Transient crosslinks are subsequently introduced by complexation of the TPy units with different divalent transition metal ions. This strategy provides access to hydrogels with superior mechanical properties compared to the pure covalently crosslinked PiPOx hydrogels. The mechanical properties and water uptake of the hydrogels could be easily controlled by swelling in different aqueous metal ion solutions. PiPOx hydrogels swollen in Zn2+ solution are found to possess ultrahigh compression strength (9 MPa), remarkable toughness (99 MJ m?3) and outstanding self‐recoverability (98% toughness recovery after swelling for 60 min without external stimuli), which are among the highest reported in literature to date. These remarkable properties are assigned to the thermodynamically stable, but kinetically labile Zn2+‐TPy complexes that produce a dynamic network with fewer imperfections and better adaptive properties under mechanical stress compared to those with other metal ions.  相似文献   

4.
Luminescent hydrogels are of great potential for many fields, particularly serving as biomaterials ranging from fluorescent sensors to bioimaging agents. Here, robust luminescent hydrogels are reported using lanthanide complexes as emitting sources via a hierarchical organic–inorganic self‐assembling strategy. A new organic ligand is synthesized, consisting of a terpyridine unit and two flexibly linked methylimidazole moieties to coordinate with europium(III) (Eu3+) tri‐thenoyltrifluoroacetone (Eu(TTA)3), leading to a stable amphiphilic Eu3+‐containing monomer. Synergistic coordination of TTA and terpyridine units allows the monomer to self‐assemble into spherical micelles in water, thus maintaining the luminescence of Ln complexes in water. The micelles further coassemble with exfoliated Laponite nanosheets coated with sodium polyacrylate into networks based on the electrostatic interactions, resulting in the supramolecular hydrogel possessing strong luminescence, extraordinary mechanical property, as well as self‐healing ability. The results demonstrate that hierarchical organic–inorganic self‐assembly is a versatile and effective strategy to create luminescent hydrogels containing lanthanide complexes, giving rise to great potential applications as a soft material.  相似文献   

5.
Conventional design wisdom prevents both bulk and interfacial toughness to be presented in the same hydrogel, because the bulk properties of hydrogels are usually different from the interfacial properties of the same hydrogels on solid surfaces. Here, a fully‐physically‐linked agar (the first network)/poly(N ‐hydroxyethyl acrylamide) (pHEAA, the second network), where both networks are physically crosslinked via hydrogen bonds, is designed and synthesized. Bulk agar/pHEAA hydrogels exhibit high mechanical properties (2.6 MPa tensile stress, 8.0 tensile strain, 8000 J m?2 tearing energy, 1.62 MJ m?3 energy dissipation), high self‐recovery without any external stimuli (62%/30% toughness/stiffness recovery), and self‐healing property. More impressively, without any surface modification, agar/pHEAA hydrogels can be easily and physically anchored onto different nonporous solid substrates of glass, titanium, aluminum, and ceramics to produce superadhesive hydrogel–solid interfaces (i.e., high interfacial toughness of 2000–7000 J m?2). Comparison of as‐prepared and swollen gels in water and hydrogen‐bond‐breaking solvents reveals that strong bulk toughness provides a structural basis for strong interfacial toughness, and both high toughness mainly stem from cooperative hydrogen bonds between and within two networks and between two networks and solid substrates. This work demonstrates a new gel system to achieve superhigh bulk and interfacial toughness on nonporous solid surfaces.  相似文献   

6.
An aneurysm is a life‐threatening vascular disease. Embolization with shape memory (SM) hydrogel coils is promising for the treatment of the intractable aneurysms. However, single temperature‐triggered SM is softened in a catheter, and delivery of multiple coils is required, which may clog the catheter and complicate operation procedure. Here, a radiopaque temperature/pH dual responsive shape memory hydrogel with self‐tuned stiffness is fabricated by copolymerizing acrylonitrile (AN, dipole–dipole interaction monomer), N‐acryloyl 2‐glycine (ACG, pH‐sensitive H‐bonding monomer), and polyethylene glycol diacrylate. Under slightly acidic conditions without eliciting cytotoxicity, additional supramolecular PACG hydrogen bonds combined with cyano dipole–dipole pairings contribute to the body temperature‐triggered SM effect with an unprecedented high 430 MPa (10 °C) and 16 MPa (37 °C) Young's modulus. A carotid aneurysm is created in a dog to test the embolization of this SM hydrogel. At 37 °C, the hydrogel's high stiffness ensures its smooth delivery through a catheter. After being transported into the aneurysm sac, secondary swelling occurs concurrent with appropriate decrease of stiffness upon contacting neutral blood, thus enhancing the packing density and reducing recanalization rate and delivery times. This stiffness adaptive SM hydrogel holds its great potential as permanent embolic agents for treating a variety of aneurysms.  相似文献   

7.
The synthesis of doxorubicin‐loaded metal–organic framework nanoparticles (NMOFs) coated with a stimuli‐responsive nucleic acid‐based polyacrylamide hydrogel is described. The formation of the hydrogel is stimulated by the crosslinking of two polyacrylamide chains, PA and PB, that are functionalized with two nucleic acid hairpins ( 4 ) and ( 5 ) using the strand‐induced hybridization chain reaction. The resulting duplex‐bridged polyacrylamide hydrogel includes the anti‐ATP (adenosine triphosphate) aptamer sequence in a caged configuration. The drug encapsulated in the NMOFs is locked by the hydrogel coating. In the presence of ATP that is overexpressed in cancer cells, the hydrogel coating is degraded via the formation of the ATP–aptamer complex, resulting in the release of doxorubicin drug. In addition to the introduction of a general means to synthesize drug‐loaded stimuli‐responsive nucleic acid‐based polyacrylamide hydrogel‐coated NMOFs hybrids, the functionalized NMOFs resolve significant limitations associated with the recently reported nucleic acid‐gated drug‐loaded NMOFs. The study reveals substantially higher loading of the drug in the hydrogel‐coated NMOFs as compared to the nucleic acid‐gated NMOFs and overcomes the nonspecific leakage of the drug observed with the nucleic‐acid‐protected NMOFs. The doxorubicin‐loaded, ATP‐responsive, hydrogel‐coated NMOFs reveal selective and effective cytotoxicity toward MDA‐MB‐231 breast cancer cells, as compared to normal MCF‐10A epithelial breast cells.  相似文献   

8.
Keeping the stemness of human mesenchymal stem cells (hMSCs) and their adipocyte differentiation potential is critical for clinical use. However, these features are lost on traditional substrates. hMSCs have often been studied on stiff materials whereas culturing hMSCs in their native niche increases their potential. Herein, a patterned hydrogel nanocomposite with the stiffness of liver tissues is obtained without any molding process. To investigate hMSCs' mechanoresponse to the material, the RGD spacing units and the stiffness of the hydrogels are dually tuned via the linker length. This work suggests that hMSCs' locomotion is influenced by the nature of the hydrogel layer (bulk or thin film). Contrary to on bulk surfaces, cell traction occurs during cell spreading on thin films. In addition, hMSCs' spreading behavior varies from shorter to longer linker‐based hydrogels, where on both surfaces hMSCs maintains their stemness as well as their adipogenic differentiation potential with a higher number of adipocytes for nanocomposites with a longer polymer linker. Overall, this work addresses the need for a new alternative for hMSCs culture allowing the cells to differentiate exclusively into adipocytes. This material represents a cell‐responsive platform with a tissue‐mimicking architecture given by the mechanical and morphological properties of the hydrogel.  相似文献   

9.
Halogen bonding is arguably the least exploited among the many non‐covalent interactions used in dictating molecular self‐assembly. However, its directionality renders it unique compared to ubiquitous hydrogen bonding. Here, the role of this directionality in controlling the performance of light‐responsive supramolecular polymers is highlighted. In particular, it is shown that light‐induced surface patterning, a unique phenomenon occurring in azobenzene‐containing polymers, is more efficient in halogen‐bonded polymer–azobenzene complexes than in the analogous hydrogen‐bonded complexes. A systematic study is performed on a series of azo dyes containing different halogen or hydrogen bonding donor moieties, complexed to poly(4‐vinylpyridine) backbone. Through single‐atom substitution of the bond‐donor, control of both the strength and the nature of the noncovalent interaction between the azobenzene units and the polymer backbone is achieved. Importantly, such substitution does not significantly alter the electronic properties of the azobenzene units, hence providing us with unique tools in studying the structure–performance relationships in the light‐induced surface deformation process. The results represent the first demonstration of light‐responsive halogen‐bonded polymer systems and also highlight the remarkable potential of halogen bonding in fundamental studies of photoresponsive azobenzene‐containing polymers.  相似文献   

10.
In this study, we report on a novel composite membrane system for pH‐responsive controlled release, which is composed of a porous membrane with linear grafted, positively pH‐responsive polymeric gates acting as functional valves, and a crosslinked, negatively pH‐responsive hydrogel inside the reservoir working as a functional pumping element. The proposed system features a large responsive release rate that goes effectively beyond the limit of concentration‐driven diffusion due to the pumping effects of the negatively pH‐responsive hydrogel inside the reservoir. The pH‐responsive gating membranes were prepared by grafting poly(methacrylic acid) (PMAA) linear chains onto porous polyvinylidene fluoride (PVDF) membrane substrates using a plasma‐graft pore‐filling polymerization, and the crosslinked poly(N,N‐dimethylaminoethyl methacrylate) (PDM) hydrogels were synthesized by free radical polymerization. The volume phase‐transition characteristics of PMAA and PDM were opposite. The proposed system opens new doors for pH‐responsive “smart” or “intelligent” controlled‐release systems, which are highly attractive for drug‐delivery systems, chemical carriers, sensors, and so on.  相似文献   

11.
A novel hydrogel suspension array, which possesses the joint advantages of quantum‐dot‐encoded technology, bioresponsive hydrogels, and photonic crystal sensors with full multiplexing label‐free DNA detection capability is developed. The microcarriers of the suspension array are quantum‐dot‐tagged DNA‐responsive hydrogel photonic beads. In the case of label‐free DNA detection, specific hybridization of target DNA and the crosslinked single‐stranded DNA in the hydrogel grid will cause hydrogel shrinking, which can be detected as a corresponding blue shift in the Bragg diffraction peak position of the beads that can be used for quantitatively estimating the amount of target DNA. The results of the label‐free DNA detection show that the suspension array has high selectivity and sensitivity with a detection limit of 10?9 M . This method has the potential to provide low cost, miniaturization, and simple and real‐time monitoring of hybridization reaction platforms for detecting genetic variations and sequencing genes.  相似文献   

12.
Stimuli‐responsive hydrogels with decent electrical properties are a promising class of polymeric materials for a range of technological applications, such as electrical, electrochemical, and biomedical devices. In this paper, thermally responsive and conductive hybrid hydrogels are synthesized by in situ formation of continuous network of conductive polymer hydrogels crosslinked by phytic acid in poly(N‐isopropylacrylamide) matrix. The interpenetrating binary network structure provides the hybrid hydrogels with continuous transporting path for electrons, highly porous microstructure, strong interactions between two hydrogel networks, thus endowing the hybrid hydrogels with a unique combination of high electrical conductivity (up to 0.8 S m?1), high thermoresponsive sensitivity (significant volume change within several seconds), and greatly enhanced mechanical properties. This work demonstrates that the architecture of the filling phase in the hydrogel matrix and design of hybrid hydrogel structure play an important role in determining the performance of the resulting hybrid material. The attractive performance of these hybrid hydrogels is further demonstrated by the developed switcher device which suggests potential applications in stimuli‐responsive electronic devices.  相似文献   

13.
Exploitation of unique biochemical and biophysical properties of marine organisms has led to the development of functional biomaterials for various biomedical applications. Recently, ascidians have received great attention, owing to their extraordinary properties such as strong underwater adhesion and rapid self‐regeneration. Specific polypeptides containing 3,4,5‐trihydroxyphenylalanine (TOPA) in the blood cells of ascidians are associated with such intrinsic properties generated through complex oxidative processes. In this study, a bioinspired hydrogel platform is developed, demonstrating versatile applicability for tissue engineering and drug delivery, by conjugating pyrogallol (PG) moiety resembling ascidian TOPA to hyaluronic acid (HA). The HA–PG conjugate can be rapidly crosslinked by dual modes of oxidative mechanisms using an oxidant or pH control, resulting in hydrogels with different mechanical and physical characteristics. The versatile utility of HA–PG hydrogels formed via different crosslinking mechanisms is tested for different biomedical platforms, including microparticles for sustained drug delivery and tissue adhesive for noninvasive cell transplantation. With extraordinarily fast and different routes of PG oxidation, ascidian‐inspired HA–PG hydrogel system may provide a promising biomaterial platform for a wide range of biomedical applications.  相似文献   

14.
Recently, strong polymer‐based hydrogels have been intensively investigated. However, the development of tough protein hydrogels with controlled degradation for bone regeneration has rarely been reported. Here, regenerated silk fibroin/gelatin (RSF/G) hydrogels with both strength and controlled degradation are prepared via physically and chemically double‐crosslinked networks. As a representative example, the 9%RSF/3%G hydrogel shows approximately 80% elongation and a compressive and tensile modulus of up to 0.25 and 0.21 MPa, respectively. It also shows a degradation rate that can be adjusted to approximately three months in vivo, a value between that of the rapidly degrading gelatin hydrogel and the slowly degrading RSF hydrogel. The 9%RSF/3%G hydrogel has good biocompatibility and promotes the proliferation and differentiation of bone marrow–derived stem cells compared with the control and pure RSF hydrogels. At 12 weeks after implantation of the gel in a calvarial defect, micro‐computed tomography shows greater bone volume and bone mineral density in the 9%RSF/3%G group. More importantly, histology reveals more mineralization and enhancements in the quality and rate of bone regeneration with less of a tissue response in the 9%RSF/3%G group. These results indicate the promising potential of this tough protein hydrogel with controlled degradation for bone regeneration applications.  相似文献   

15.
Novel poly(N‐isopropylacrylamide)‐clay (PNIPAM‐clay) nanocomposite (NC) hydrogels with both excellent responsive bending and elastic properties are developed as temperature‐controlled manipulators. The PNIPAM‐clay NC structure provides the hydrogel with excellent mechanical property, and the thermoresponsive bending property of the PNIPAM‐clay NC hydrogel is achieved by designing an asymmetrical distribution of nanoclays across the hydrogel thickness. The hydrogel is simply fabricated by a two‐step photo polymerization. The thermoresponsive bending property of the PNIPAM‐clay NC hydrogel is resulted from the unequal forces generated by the thermoinduced asynchronous shrinkage of hydrogel layers with different clay contents. The thermoresponsive bending direction and degree of the PNIPAM‐clay NC hydrogel can be adjusted by controlling the thickness ratio of the hydrogel layers with different clay contents. The prepared PNIPAM‐clay NC hydrogels exhibit rapid, reversible, and repeatable thermoresponsive bending/unbending characteristics upon heating and cooling. The proposed PNIPAM‐clay NC hydrogels with excellent responsive bending property are demonstrated as temperature‐controlled manipulators for various applications including encapsulation, capture, and transportation of targeted objects. They are highly attractive material candidates for stimuli‐responsive “smart” soft robots in myriad fields such as manipulators, grippers, and cantilever sensors.  相似文献   

16.
Versatile strategies are currently being discovered for the fabrication of synthetic polypeptide‐based hybrid hydrogels, which have potential applications in polymer therapeutics and regenerative medicine. Herein, a new concept—the reverse micellar hydrogel—is introduced, and a versatile strategy is provided for fabricating supramolecular polypeptide‐based normal micellar hydrogel and reverse micellar hydrogels from the same polypeptide‐based copolymer via the cooperation of host–guest chemistry and hydrogen‐bonding interactions. The supramolecular hydrogels are thoroughly characterized, and a mechanism for their self‐assembly is proposed. These hydrogels can respond to dual stimuli—temperature and pH—and their mechanical and controlled drug‐release properties can be tuned by the copolymer topology and the polypeptide composition. The reverse micellar hydrogel can load 10% of the anticancer drug doxorubicin hydrochloride (DOX) and sustain DOX release for 45 days, indicating that it could be useful as an injectable drug delivery system.  相似文献   

17.
Charge transfer processes between donor–acceptor complexes and metallic electrodes are at the heart of novel organic optoelectronic devices such as solar cells. Here, a combined approach of surface‐sensitive microscopy, synchrotron radiation spectroscopy, and state‐of‐the‐art ab initio calculations is used to demonstrate the delicate balance that exists between intermolecular and molecule–substrate interactions, hybridization, and charge transfer in model donor–acceptor assemblies at metal‐organic interfaces. It is shown that charge transfer and chemical properties of interfaces based on single component layers cannot be naively extrapolated to binary donor–acceptor assemblies. In particular, studying the self‐assembly of supramolecular nanostructures on Cu(111), composed of fluorinated copper‐phthalocyanines (F16CuPc) and diindenoperylene (DIP), it is found that, in reference to the associated single component layers, the donor (DIP) decouples electronically from the metal surface, while the acceptor (F16CuPc) suffers strong hybridization with the substrate.  相似文献   

18.
Stimuli‐responsive, drug‐loaded, DNA‐based nano‐ and micro‐capsules attract scientific interest as signal‐triggered carriers for controlled drug release. The methods to construct the nano‐/micro‐capsules involve i) the layer‐by‐layer deposition of signal‐reconfigurable DNA shells on drug‐loaded microparticles acting as templates, followed by dissolution of the core templates; ii) the assembly of three‐dimensional capsules composed of reconfigurable DNA origami units; and iii) the synthesis of stimuli‐responsive drug‐loaded capsules stabilized by DNA?polymer hydrogels. Triggers to unlock the nano‐/micro‐capsules include enzymes, pH, light, aptamer?ligand complexes, and redox agents. The capsules are loaded with fluorescent polymers, metal nanoparticles, proteins or semiconductor quantum dots as drug models, with anti‐cancer drugs, e.g., doxorubicin, or with antibodies inhibiting cellular networks or enzymes over‐expressed in cancer cells. The mechanisms for unlocking the nano‐/micro‐capsules and releasing the drugs are discussed, and the applications of the stimuli‐responsive nano‐/micro‐capsules as sense‐and‐treat systems are addressed. The scientific challenges and future perspectives of nano‐capsules and micro‐capsules in nanomedicine are highlighted.  相似文献   

19.
Due to their potential biomedical applications, protein‐based hydrogels have attracted considerable interest. Although various methods have been developed to engineer self‐assembling, physically‐crosslinked protein hydrogels, exploring novel driving forces to engineer such hydrogels remains challenging. Protein fragment reconstitution, also known as fragment complementation, is a self‐assembling mechanism by which protein fragments can reconstitute the folded conformation of the native protein when split into two halves. Although it has been used in biophysical studies and bioassays, fragment reconstitution has not been explored for hydrogel construction. Using a small protein GL5 as a model, which is capable of fragment reconstitution to reconstitute the folded GL5 spontaneously when split into two halves, GN and GC, we demonstrate that protein fragment reconstitution is a novel driving force for engineering self‐assembling reversible protein hydrogels. Fragment reconstitution between GN and GC crosslinks GN and GC‐containing proteins into self‐assembling reversible protein hydrogels. These novel hydrogels show temperature‐dependent reversible sol‐gel transition, and excellent property against erosion in water. Since many proteins can undergo fragment reconstitution, we anticipate that such fragment reconstitution may offer a general driving force for engineering protein hydrogels from a variety of proteins, and thus significantly expanding the ‘toolbox’ currently available in the field of biomaterials.  相似文献   

20.
Bio‐inspired nanochannels have emerged as an interface to mimic the functionalities of biological nanochannels. One remaining challenge is to develop double‐gated nanochannels with dual response, which can regulate the ion transport direction by alternately opening and closing the two gates. In this work, a bio‐inspired potassium and pH responsive double‐gated nanosystem is presented, constructed through immobilizing C‐quadruplex and G‐quadruplex DNA molecules onto the top and bottom tip side of a cigar‐shaped nanochannel, respectively. It is demonstrated that the two gates of the nanochannel can be opened and closed alternately/simultaneously. This phenomenon results from the attached DNA conformational transition caused by adjusting the concentrations of potassium ion and proton. This design is believed to be the first example of dual‐responsive double‐gated nanosystem, and paves a new way to investigate more intelligent bio‐inspired nanofluidic system.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号