首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 500 毫秒
1.
建立了一个二维稳态等温的质子交换膜燃料电池(PEMFC)模型用于研究电池内部水传输机理。模型综合考虑了电池中的动量守恒、质量传输和电荷守恒,以及催化层中的电化学反应。通过计算预测了电池在特定条件下的极化曲线,曲线趋势和试验结果吻合良好。模拟分析电池内部水传输机理表明:电流密度增加会加强水从阳极向阴极的迁移,使膜的阳极侧脱水;进气湿度对水的传输有较大的影响,减小任何一侧气体的相对湿度会使膜大范围干燥,导致电池性能下降。  相似文献   

2.
目的研究质子交换膜(PEM)燃料电池的操作参数的影响,提高PEM燃料电池的性能和稳定性,降低PEM燃料电池成本,促进其实用化.方法运用燃料电池测试站对有效面积为4 cm×4 cm的PEM燃料电池单体的性能和功率密度进行了实验测试.分析了电池加热温度,氢气和空气的加湿温度对PEM燃料电池性能和功率密度的影响.结果加湿温度低于电池温度时,升高加湿温度,电池性能得到改善;加湿温度高于电池温度时,高电流密度下升高加湿温度,电池性能降低;电池温度低于加湿温度时,升高电池温度,电池性能提高;电池温度高于加湿温度时,升高电池温度,电池性能降低.结论加湿温度和电池温度都为70℃时,电池的性能最优;因此实验结果对PEM燃料电池性能的优化具有重要意义.  相似文献   

3.
运用Fluent的PEM模块对质子交换膜燃料电池不同的加湿程度进行研究。分析了不同的加湿程度对燃料电池性能的影响,尤其讨论了在高电流密度情况下,浓差极化时燃料电池性能的影响。对80℃阴极气体分为不加湿、50%加湿和100%加湿进行对比,结果表明,低电流密度100%加湿性能更好,在高电流密度时50%加湿性能更好。另外详细分析了浓差极化区燃料电池内部水的摩尔浓度、氧气浓度分布与电池性能的影响关系,表明浓差极化仅在燃料电池的部分区域发生。不同的工作电流密度下选取合适的加湿度可以提高燃料电池的性能。  相似文献   

4.
为了考察质子交换膜燃料电池气体扩散层的结构对排水、导电、导气等性能的影响,综合考虑电化学反应、水的相变及传输、氧气的传输、膜中水传输等因素,研究了在平面内孔隙率间隔变化分布的气体扩散层对燃料电池性能的影响.结果表明,由平面内孔隙率间隔分布的气体扩散层组成的燃料电池,其性能高于由普通扩散层组成电池的性能,因为平面内孔隙率间隔分布的气体扩散层都能够提高其液态水和气体的通过能力,从而提高电池的性能.  相似文献   

5.
为了研究不同进气温度对质子交换膜燃料电池性能的影响.首先分析了质子交换膜燃料电池反应的基本原理;其次建立了一个质子交换膜燃料电池性能测试平台,通过控制空气和氢气侧压力为0.1 MPa、燃料电池工作温度为60℃时,同时改变阴极和阳极侧进气温度来对一个由十片单电池组成的电堆进行实验.实验结果表明:质子交换膜燃料电池性能受进气温度影响较大,在燃料电池进气压力和工作温度一定的情况下,随着进气流量的增加,进气温度随之升高,电池性能也将得到明显改善;其次,通过比较同一进气压力、进气温度和工作温度下电堆的一致性,得出第十片单电池性能衰减较快.  相似文献   

6.
商业尺寸质子交换膜燃料电池性能实验研究   总被引:1,自引:1,他引:0  
实验测试了不同电池操作温度和反应气加湿温度下,反应面积为256 cm2商用质子交换膜燃料电池的性能,通过对极化曲线的测量,重点分析了操作温度与加湿温度对不同厚度质子膜含水量及电池阴极水泛滥的影响.结果表明,质子膜含水量及阴极液态水移除主要取决于加湿温度和操作温度的最佳匹配.当操作温度低于加湿温度时,电池性能随操作温度升...  相似文献   

7.
质子交换膜燃料电池的湿度特性和水的迁移途径   总被引:2,自引:0,他引:2  
质子交换膜燃料电池的工作性能与湿度密切相关。本文研究了影响质子交换膜燃料电池水平衡的各种因素:电流密度上升,阴极生成的水量也逐渐增多;随着电地温度的提高,维持电池水平衡的电流密度必须提高;为减小欧姆损失,阳极气流需要增湿。本文分析了质子交换膜燃料电池水迁移的原理。为了利用反应生成的水,要采用水管理方法:水管理不足以获得足够含水率时,应采用加湿技术。本文比较了内外加湿法的优劣,借助数学建模的方法模拟了电池内部的工作过程,预测内部湿化系统可以免除气体交叉现象的出现,可以克服电池性能受到影响的弊病。  相似文献   

8.
利用一个新的混合区域法对质子交换膜燃料电池进行了模拟计算.这个新方法是建立在一套完整的守恒方程基础之上的,它包括了质量守恒、动量守恒、化学组分守恒、质子和电子守恒、水容量在交换膜中的守恒等.在这个混合区域法中,水浓度守恒方程只是在电池两极的气道、气体扩散层和催化层中求解,而在质子交换膜中,求解了一个水容量守恒方程.这2个方程通过内部边界条件在交换膜和催化层的交界面相连接.另外,在催化层中求解水浓度守恒方程时,还利用了一个"假象的水浓度"的概念,从而可以准确地考虑水在膜介质中的传递.这个方法适用于质子交换膜燃料电池的三维计算模拟,其计算区域包括电池两极的双极板、气道、气体扩散层和催化层、以及中间的质子交换膜.研究表明这个新方法可以给出比单区域法更准确、更合理的计算结果.  相似文献   

9.
目的研究电池温度、加湿温度、气体流量对氢-空交指流场PEM电池性能的影响,优化操作参数,提高PEM燃料电池的性能和稳定性,降低成本,促进其实用化.方法运用燃料电池测试系统测量了PEM燃料电池的性能,分析了电池温度、加湿温度和气体流量对其性能的影响.结果单有氢气或空气加湿,质子交换膜不能充分湿润,燃料电池性能较低;当电池温度和加湿温度同时等于343 K时,电池性能最佳;实验条件下,空气流量为260 ml.cm-3时,最佳氢气流量为70 ml.cm-3.结论实验结果对PEM燃料电池的参数优化具有重要的参考作用,为其推广应用提供实践依据.  相似文献   

10.
质子交换膜(PEM)燃料电池操作参数的优化是提高其性能和稳定性的重要手段.介绍了燃料电池测试系统的主要功能和使用方法,并运用此系统试对PEM燃料电池动态特性进行了测试.分析了操作参数对PEM燃料电池性能的影响.研究结果发现仅加湿空气或氢气,电池电流密度低,为了获得良好的电池性能,空气和氢气必须同时加湿;电池的加热温度过高或过低,PEM燃料电池的电流密度都很低;加湿温度过低时的电池电流密度比加湿温度过高时的电池电流密度更低;电池温度343 K和加湿温度333 K时,燃料电池的电流密度最大;加大反应气体空气的流量,燃料电池的电流密度一直增大;而增大氢气流量时,电池的电流密度先增大,而后趋于平稳.实验结果对于促进PEM燃料电池的商业化具有重要意义.  相似文献   

11.
基于质子交换膜动态特性的PEM燃料电池建模与仿真   总被引:2,自引:0,他引:2  
质子交换膜是燃料电池的核心部分,膜的含水量及膜内阻对燃料电池的性能至关重要。基于质量守恒、能量守恒、电荷守恒和电化学反应动力学,将燃料电池划分为阳极气道、阳极扩散层/催化层、质子交换膜、阴极气道、阴极扩散层/催化层5个控制体,建立了简化的半机理半经验动态模型,描述了H2O和H2等各组分在相应控制体内及燃料电池关于电压、温度、压力和膜含水量等一些重要变量(如电压、温度、压力和膜含水量等)的动静态特性;描述了水通量密度、质子通量密度和含水量等膜内变量(如水通量密度、质子通量密度和含水量等)的动态过程。仿真结果表明,该模型能够较准确地反映运行参数对PEMFC动静态性能的影响。  相似文献   

12.
通过聚集体模型描述催化层结构,建立了阴阳极包括蛇形流道、多孔扩散层、质子交换膜和催化层的完整质子交换膜燃料电池(PEMFC)三维流体力学模型,重点研究稳态条件下的基本工作参数分布和气体扩散层渗透率的影响.模型方程借助于计算流体力学软件-F luent求解.模拟的极化行为验证了模型的有效性,说明在燃料电池模型中充分考虑催化层的必要性.计算结果表明流体流速、压力、反应气体组成和局部电流密度等参数的空间分布明显,并且受气体扩散层渗透率影响明显,优化气体扩散层结构至关重要.  相似文献   

13.
Huo  Sen  Shi  WeiYu  Wang  RenFang  Lu  BingBing  Wang  Yang  Jiao  Kui  Hou  ZhongJun 《中国科学:技术科学(英文版)》2021,64(5):1041-1056
Metal foam material, which serves as an alternative replacement of the conventional flow distributor of proton exchange membrane(PEM) fuel cell, has been attracting much attention over last few decades. In this work, three-dimensional modeling work for PEM fuel cell containing metal foam as cathode flow distributor has been carried out. The fuel cell performance and operating characteristics of metal foam flow field and conventional parallel flow channel have been compared and discussed.The cell performance has been reasonably validated based on the corresponding experimental tests conducted in this study. The superior performance of PEM fuel cell with metal foam as cathode flow field benefits a lot from the uniform gas flow. The porous metal foam material provides more pathways for the water delivery at the interface of metal foam flow field and gas diffusion layer(GDL), accelerating water removal capability of cathode. Because of the significant oxygen transfer loss in diffusion limited parallel channel, the operation of PEM fuel cell with parallel channel is found to be more sensitive to cathode humidification and oxygen supply at inlet. Due to the more uniform and effective electron transport though the porous electrode, it is possible to use thinner GDL in metal foam PEM fuel cell. It is expected that this study could give a good baseline of operating behavior of PEM fuel cell with metal foam flow distributor.  相似文献   

14.
质子交换膜燃料电池加湿器的建模与仿真   总被引:2,自引:0,他引:2  
为了深入研究质子交换膜燃料电池加湿器的工作性能,从传热传质学的角度分析膜加湿器系统,建立加湿器的机理模型。当已知加湿器入口气体和水流的状态参数(如:温度、流量、压力)以及加湿器的物理参数(如:气道的几何形状和热传导系数等)时,此模型可以计算出加湿器出口气体的相对湿度、温度以及出口水温等变量值。以1 kW质子交换膜燃料电池的参数为依据,用Simulink进行仿真。仿真结果与实验数据的比较表明,模型能够反映出加湿器的实际工作状况。  相似文献   

15.
生物质燃料燃烧后所产生的烟气中含有大量的水蒸气, 在锅炉尾部添加冷凝换热器回收冷凝热可以有效提高系统热效率。选用的生物质燃料烟气中水蒸气的体积分数为27.9%, 基于Mixture模型并选用Lee模型作为冷凝传质模型对尾部烟气凝结的传热传质特性进行了数值模拟研究。假设流动为稳态, 湍流模型采用标准kε模型, 求解选用Simple算法, 研究了烟气侧不同入口流速下(1~4 m/s)温度场、流场及液态水体积分数的变化规律, 对翅片管换热器的表面传热系数及换热量进行了对比分析。计算结果表明, 随着入口流速的增加, 烟气出口温度逐渐升高, 壁面凝结速率不断增大, 而冷凝水量逐渐减少, 同时翅片管换热器的表面传热系数及换热量逐渐增加。  相似文献   

16.
质子交换膜燃料电池中液态水含量的多少对电池性能具有十分重要的影响。考虑了质子交换膜燃料电池催化层中气液态水的影响,在假设电池内部保持等温、稳态的基础上建立了电池阴极一维气液两相流模型。运用MATLAB软件对电池内部不同的液态水饱和度、温度以及不同阴极进气压力对单电池输出电压的影响进行了仿真,得出不同条件下的电流密度和电压之间的关系曲线,将仿真结果与实验数据相比较,该结果与实验数据符合较好,可为车用燃料电池的优化与控制提供依据。  相似文献   

17.
质子交换膜燃料电池(PEMFC:Proton Exchanges Membrane Fuel Cell)水管理是其可靠高效运行的关键,利用多孔介质毛细压力理论建立了PEMFC梯度扩散层液态水传输模型。在此基础上计算了催化层/扩散层和扩散层/流道界面上相饱和度差值为一定值时不同结构扩散层的液态水通过能力,就扩散层孔隙率对液态水传输的影响进行了分析。认为扩散层的过水流量随孔隙率的增加而增加,同时又随孔隙率的增加而增加。即如果扩散层具有较大孔隙率和较大孔隙率梯度,PEMFC可以发出更大的电流密度,而膜电极可能不会产生水淹现象。  相似文献   

18.
本研究考虑2种情境提升原有都市水资源回收中心为绿色加气站,设置"绿色加气站"(含"甲烷供应系统"及"绿色氢供应系统")与"绿色加电站".故变更本水资源处理流程,分2种构想.构想1,将园区周边高浓度有机废水做为本处理厂水来源之一,或采用高低浓度废水分流收集方式,废水处理系统则采用两相式厌氧处理系统,以废水及污泥产制氢气及甲烷气成为气态生质能源.构想2,于现有规划设计增设新型有机污泥处理设施,包含高温好氧消化系统及甲烷化系统,可以直接生产甲烷气.另外,可于场址顶部设计太阳能丛林,产生之电力直接供应园区用电,或将处理出流水电解产生氢气燃料.本研究以污水处理量18 000CMD计算可产生之气体燃料,并换算至现有压缩天然气(CNG)公交车、电动车以及氢能汽车所需气体燃料量进行效益分析,若废水处理流程更改为构想1,每日所产生之氢气可供应250部氢能车使用,同时产生的甲烷气体可供应50部CNG公交车使用,若氢气透过燃料电池发电可供应378车次的电动车充电,但此方案必须导入园区周边的高浓度有机废水,将废水COD浓度提高至5g/L才能有效实行.构想2,在不更动现有的水资源回收处理程序设计下,仅在程序中增加有机污泥能源化系统,每日产制出的甲烷气体可供应20部CNG公交车使用,并降低系统污泥产生量达80%,不仅可达到能源回收的目的亦可降低污泥处置成本.最后若于水资源处理中心建物顶端设置太阳能板丛林,所产生的电力可供应园区使用,或可提供电动车加电站使用,每日可补充22车次的电动车.透过设置放流水电解系统,每日可供应7部氢能车使用;设置太阳能发电及电解系统,不仅可提升水回收比例,更具有展示及美化功能.  相似文献   

19.
海底管道停输温降直接决定着海管置换与掺水输送时机,以及停输后能否顺利再启动。为了研究海管各覆盖层的蓄热对停输温降的延缓作用,通过理论分析各层相对流体的蓄能能力大小,模拟计算钢管和土壤蓄热对不同类型管道停输后温降的影响情况,并以渤海两条实际管道为例优化输送方案。结果表明,钢管蓄热总量约为所输原油蓄热总量的一半,所输水量的1/4,所输天然气的4~16倍(根据系统压力的不同);钢管和土壤的蓄热散热对流体停输温降均有一定的延缓作用。对于保温管道,钢管的蓄热散热具有主导作用;不保温管道,土壤的蓄热散热影响很大;对于渤海油田常见的输油海管,考虑钢管的蓄热散热能提高管线出口温度3.5~13.5 ℃;对于混输保温管道,当气油比(GOR)大于10时,钢管蓄热对停输温降的延缓作用尤为明显,有利于安全顺利输送;考虑土壤或钢管的蓄热散热对停输温降的影响可以延缓或取消掺水输送。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号