首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 296 毫秒
1.
Er,Cr:YSGG lasers are currently being investigated for disinfecting the root canal treatment. The aim of this study was to compare the effects of various irrigation protocols on push-out bond strength of fiber posts. Fifty maxillary anterior teeth were divided into five groups (n = 10) according to the protocol that applied into the post space. Group-1: distilled water, Group-2: 5% NaOCl, Group-3: 2% CHX, Group-4: Er,Cr:YSGG laser (1.5 W, 20 Hz, 85 air, 75 water, 26.7 J/cm2), Group-5: Er,Cr:YSGG laser (1.25 W, 50 Hz, 34 air, 24 water, 12.7 J/cm2). Fiber posts were cemented with resin cement. The remaining part of the root, three slices were obtained from each specimen and push-out test was performed. One-way ANOVA and Duncan’s test at a 5% level of significance were used for the statistical analysis. Post space irradiation with Er,Cr:YSGG laser (1.5 W 20 Hz, 85 air, 75 water, 26.7 J/cm2) increases push-out bond strength of fiber post to root canal dentin. Further investigations are needed to establish and optimize ER,Cr:YSGG laser parameters to increase the push-out bond strength of fiber posts.  相似文献   

2.
Objectives: This study evaluated the effect of different root canal sealers on the push-out bond strength of tooth-colored posts to root dentin. Material and methods: Eighty human mandibular premolar teeth with single roots were decoronated and randomly divided into two groups according to post material: G1–G5: Cytec blanco; G6–G10: Cosmopost. In each group, the specimens were further subgrouped according to the filling material plus sealer (n = 8): G1, G6: Gutta-percha + AH Plus; G2, G7: Resilon + Epiphany SE; G3, G8: Gutta-percha + Sealite; G4, G9: Gutta-percha + iRoot SP; and G5, G10: control (unobturated). Cytec blanco and Cosmopost of 1.4 mm diameter were adhesively luted to samples using Variolink II. Push-out test was performed in a universal testing machine, and failure modes were examined under stereomicroscope. Data were analyzed with the two-way ANOVA and post hoc Tukey’s tests. Statistical significance was set to 0.05. Results: Roots obturated with AH Plus (3.48 ± 1.41 MPa), Sealite (3.47 ± 0.65 MPa), and Resilon (3.36 ± 1.23 MPa) had the lowest bond strength (p < 0.005). iRoot SP and control group samples showed the highest bond strength values (7.38 ± 0.89 MPa and 6.43 ± 1.16 MPa, respectively) (p < 0.05). Significant differences were observed among tooth-colored posts and sealers (p < 0.05). Adhesive failures were predominant in all groups (48%). Conclusions: When the resin cement Variolink II was used, the types of root canal filling materials and sealers could affect the retentions of the fiber/zirconium posts; the fiber post revealed the higher bond values than the zirconium post; and the calcium silicate-based sealer (iRoot SP) revealed the highest bond strengths.  相似文献   

3.
The aim of this study was to evaluate the influence of the frequency of mechanical pulses during mechanical fatigue aging on bond strength between glass fiber posts and root dentin. Fiber posts were adhesively cemented in 30 bovine roots and the core was built up with composite. All specimens were subjected to mechanical cycling (45° angle; 37 °C; 50 N; 2×106 pulses) at different frequencies: 2, 4, and 8 Hz. After the fatigue, each specimen was submitted to push out test. The bond strength was calculated for data analysis (one-way ANOVA, p = 0.05). The frequency did not affect the push-out (p = 0.7). The main failure mode was between dentin and cement in all groups. The mechanical pulses were not influenced by the bond strength between root dentin and fiber posts. Thus, it is possible to decrease the time-consuming in vitro tests involving posts without damaging the reliability of the test.  相似文献   

4.
The aim of this study was to evaluate the immediate and the long-term push-out bond strength of glass fiber posts (GFP) cemented with conventional or self-adhesive dual-curing resin cements, at different root depths. Prior to cementation, the GFP (Reforpost #3, Angelus) were etched with 37% phosphoric acid for 30 s followed by silane for 1 min. Thirty canine roots were divided into two groups (n = 15) according to resin cement type: ARC – dual resin cement (RelyX ARC/3M ESPE) combined with an three-step etch-and-rinse adhesive (Adper Scotch Bond Multi-Purpose Plus 3M/ESPE) or U200 – self-adhesive resin cement (RelyX U200/3M ESPE). The manufacturer’s instructions were followed. After 48 h, the roots were cross-sectioned at three different depths, resulting in serial slices corresponding to the cervical, middle, and apical root thirds. Slices were randomly divided into two groups, according to the period of water storage prior to push-out bond strength analysis: 48 h or 180 days. The data (MPa) were analyzed using three-way ANOVA for randomized blocks (p < 0.05), which showed no significant interaction between the three factors (p = 0.716). The main study factors were also proven not significant (cement: p = 0.711; time: 0.288; root third: p = 0.646). In conclusion, root depth, cement type (self-adhesive or conventional), and storage in water for 180 days did not influence the bond strength of GFP to intracanal dentin.  相似文献   

5.
This study evaluated the degree of conversion (DC) and adhesion of methacrylate-based resin cements to glass fiber posts at different regions of intraradicular dentin. Single-rooted teeth (N?=?24, n?=?12 per group) were cut at the cement–enamel junction (CEJ), endodontically treated and post space (depth?=?8 mm) was prepared. Teeth were randomly divided into two groups according to the resin cements: (a) Group ML: methacrylate-based cement with phosphonic acid acrylate (Multilink Automix, Ivoclar Vivadent); (b) Group RXU: methacrylate-based cement with phosphoric acid acrylate (RelyX Unicem 2 Automix, 3 M ESPE). Fiber-reinforced composite root posts (RelyX Fiber Post, 3 M ESPE) were cemented according to the manufacturers’ instructions of the resin cements. Root slices of 2-mm thickness (n?=?3 per tooth) were cut below the CEJ 1, 3, and 5 mm apically. The DC of each section was analyzed with micro-Raman spectrometer and push-out test was performed in the Universal Testing Machine (0.5 mm/min). After debonding, all specimens were analyzed using optical microscope to categorize the failure modes. While data (MPa) were statistically evaluated using Kruskal Wallis, Mann–Whitney U tests for DC data 3-way ANOVA and Tukey’s tests were used (α?=?0.05). Regardless of the resin cement type, the mean push-out bond strength results (MPa), were significantly higher for the coronal slices (ML: 9.1?±?2.7; RXU: 7.3?±?4.1) than those of the most apical ones (ML: 7?±?4.9; RXU: 2.89?±?1.5) (p?=?0.002). Resin cement type and (p?p?=?0.002) significantly affected the DC values, while the interaction terms were not significant (p?=?0.606). Overall, DC was significantly higher for ML (67?±?8.2%) than RXU (26?±?8.8%) (p?相似文献   

6.
The aim of this study was to evaluate the effect of cyclic loading on the bond strength of fiber posts and short fiber-reinforced composite (FRC) to root canal. One hundred single-rooted teeth were divided into two groups according to the material used for luting fiber posts: (1) Resin-core material (Gradia Core, GC Corp.) and (2) Short FRC (EverX Posterior, GC Corp.). Then the specimens were randomly assigned into three sub-groups according to the post material and the groups are indicated as follows: (1) Short FRC (EverX Posterior) used instead of post and core, (2) Fiber post (GC post, GC Corp.) cemented with resin-core (Gradia Core), (3) Fiber post (GC post, GC Corp.) cemented with short FRC (EverX Posterior), (4) Experimental fiber post cemented with resin-core (Gradia Core, GC Corp), (5) Experimental fiber post cemented with short FRC (EverX Posterior). Then the specimens were subdivided into a further two groups in accordance with the storage condition (cyclic loading and 24 h water storage-control group) (n = 10/per group). The micropush-out bond strength between root dentin and posts was measured. Data were analyzed using three-way ANOVA and Tukey HSD tests (α = 0.05). Micropush-out bond strength of the posts to dentin was significantly affected by the type of post material (p < 0.05). However, the load cycling and the resin-based luting agent used had no effect on bond strength values (p = 0.706 and p = 0.346, respectively).  相似文献   

7.
The aim of this study was to evaluate the bond strength of a universal adhesive system to dentin prepared with SiC paper or an Er,Cr:YSGG laser using different bonding strategies (etch-and-rinse versus self-etch mode). Ninety-six extracted caries-free, sound human molars were used. The teeth were longitudinally sectioned in the mesiodistal direction and were wet polished with 600-grit SiC paper to obtain a standardized flat dentin surface. All prepared teeth were randomly divided into two groups, according to the surface preparation method: GroupI:an erbium, chromium:yttrium,scandium, gallium, garnet laser; Group II: silicon carbide paper[SiC] (n = 48). Each group was then assigned into three subgroups according to the universal adhesive’s (Single Bond Universal) bonding strategies: (a) etch-and-rinse mode with phosphoric acid, (b) etch-and-rinse mode with a laser, (c) self-etch mode (n = 16). For surface preparation, the Er,Cr:YSGG laser was used at 3 W, 30 Hz with 140 μs pulse duration for 25 s. For etching mode, the laser was used at 1.5 W (60% air, 70% water). Cylinders of composite were fabricated on the bonding area and shear bond strength was determined using a universal testing machine. Failure modes were evaluated using a stereomicroscope. The data were analyzed using two-way ANOVA followed by the Bonferroni test (p < 0.05). Bonding strategies showed statistically significant differences in both the SiC-and laser-prepared groups (p < 0.05).Universal adhesive used in etch-and-rinse mode with acid showed significantly higher bond strength values than in self-etch mode (p < 0.05). The bond strength values did not differ according to the surface preparation method (p > 0.05). Irrespective of preparation method, using universal adhesive in etch-and-rinse mode with acid might improve dentin bond strength. Laser preparation did not affect the bond strength of the universal adhesive tested.  相似文献   

8.
This study aimed to evaluate the fracture load and push-out bond strength of flared root canals restored with different procedures, including a technique with a fiber post and a chemically activated resin composite. Eighty human canines were selected and treated endodontically. Two methodologies were used: push-out and fracture load. The teeth were divided into four groups: Cast metal core (CMC); PAN (direct anatomic post); PAC (fiber post and accessory posts); and PE (fiber post with chemically activated resin composite). For the fracture load test, the samples were submitted to load application in a universal testing machine. The fracture mode was evaluated visually. Forty other samples were submitted to the push-out test. The fracture load (n = 10) and the bond strength (n = 10) were analyzed by analysis of variance and Tukey tests (α < 0.05). CMC presented the highest fracture load (p < 0.05), and no significant differences were observed in the fracture load values for Groups PAN, PAC, and PE. CMC presented 90% of unfavorable failures; PAN and PAC, the remaining 10% of these failures. PE presented only favorable failures. PAC presented lower push-out bond strength values. The fracture load for CMC procedure was higher than that of the others, but presented 90% unfavorable fractures, indicating the use of any of the glass fiber post techniques evaluated for restoring flared root canals due to favorable fracture modes.  相似文献   

9.
The aim of this study was to evaluate the repair bond strength of a dimethacrylate-based composite to two hybrid CAD/CAM blocks after different surface treatments. One hunded and twenty specimens were prepared from two different CAD/CAM blocks (Lava Ultimate (L), Cerasmart (C)). After thermal aging, specimens from each group (n?=?60) were divided into 6 treatment groups (n?=?10): (1) No treatment (2) Phophoric acid (37%) for 60?s, (3) Hydrofluoric acid (8%) for 60?s, (4) Sanblasting with 50-µm aluminium oxide (5) Er,Cr:YSGG laser treatment at 2?W and (6) Er,Cr:YSGG laser treatment at 3?W. Single Bond Universal was applied on all specimens and a dimethacrylate-based composite (Tetric N-Ceram) was bonded using Teflon tubes. After thermal cycling, shear bond strength (SBS) was tested, and failure modes were evaluated. Two-way ANOVA and independent t-test were used for statistical analysis (p?<?0.05). The highest SBS values were detected at Er,Cr:YSGG laser treatment groups (3W) (L:22.7?MPa, C:22.6?MPa). Lowest SBS values were obtained at no surface pretreatment groups followed by phophoric acid treatment groups which were significantly lower than sandblasting, hydrofluoric acid treatment and Er,Cr:YSGG laser treatment groups (p?=?0.001). The universal adhesive Single Bond Universal had no effect on promoting bond strength to hybrid ceramics alone or with phosphoric acid. Sandblasting, hydrofluoric acid and laser treatment were effective at increasing repair bond strength, for both Lava Ultimate and Cerasmart.  相似文献   

10.
This study evaluated the effect of different thickness of disk-shaped specimens on the push-out bond strength test. Eighteen lower bovine teeth were sectioned (20 mm) and prepared (15 mm) with the same post system drill (Light Post® #1, Schaumburg, IL, Bisco, USA). The apical third of each specimen was embedded in a plastic matrix filled with an acrylic resin (Dencrilay?, Dencril, Sao Paulo, Brazil). The posts were cleaned with alcohol, silanated (ProSil®, FGM, Joenville, SC, Brazil) and cemented with the RelyX? U100 (3 M ESPE, St. Paul, MN, USA). Each specimen was sectioned into three pieces of differing thicknesses (1, 2, and 4 mm). These disk-samples were allocated into 3 groups (n = 18) and subjected to push-out testing. One-way ANOVA showed no influence of the specimen thickness on the results (p = 0.842). No correlation was observed between thickness and push-out bond strength (Pearson Correlation, r2 = 0.0688; P = 0.6209). The push-out bond strength test was not affected by the thickness of the disk-specimens.  相似文献   

11.
The aim of this study was to evaluate the influence of irrigation protocols on the bond strength of a glass fiber post bonded to dentin using two resin cements. In 200 root-filled teeth, post space was prepared and divided into five groups (n?=?40) based on the irrigation protocol: group 1 (3% sodium hypochlorite), group 2 (3% sodium hypochlorite – 17% Ethylene diamine tetraacetic acid), group 3 (a mixture of sodium hypochlorite and etidronic acid), group 4 (sodium hypochlorite – QMix), and group 5 (distilled water). Samples were subdivided into two subgroups (n?= 10) and fiber posts were cemented using subgroup A (Self-adhesive dual-cure resin cement; SEA) or B (dual-cure resin cement following an etch-and-rinse protocol, ER). Push-out bond strength was performed after 24 h and four months (n?= 10) and failure modes were categorized. Statistical analysis of data was carried out by appropriate analyses (p < 0.05). The irrigation protocol and the resin cement had a significant impact on push-out bond strength. Subgroup A group showed lower bond strength than B at both time periods when 3% NaOCl–17% EDTA and 1:1 mixture of 6% NaOCl + 18%EA protocols were used. Three percent NaOCl used in combination with 17% EDTA or QMix significantly decreased the push-out bond strength of ER at the end of four months (p < 0.05). In conclusion, dual-cure resin cements bonded with etch-and-rinse protocol showed highest bond strength when a mixture of NaOCl and etidronic acid was used as root canal irrigant. These values were differentially influenced by time.  相似文献   

12.
The aim of this study was to investigate the effect of different surface pretreatment methods on the bond strength of veneering resin to polyetheretherketone (PEEK) based aesthetic frameworks. Five hundred and forty PEEK disks were fabricated and divided into 6 pretreatment groups (n = 90); (C) untreated control group, (B) airborne-particle abrasion, (S) silica coating, (L) etching with Er:YAG (erbium-doped yttrium aluminium garnet) laser, (LB) etching with Er:YAG laser and airborne-particle abrasion and (LS) etching with Er:YAG laser and silica coating. After topographical surface examinations, specimens were conditioned with adhesive and veneering resin was polymerized onto the PEEK specimens. Twenty-four hours after veneering, specimens were subjected to thermal aging. Afterwards, shear bond strength (SBS) tests were performed and the obtained data were analyzed with one-way ANOVA and Tukey test at a significance level of α = .05. Group B (1.58 ± 0.15 μm), Group L (1.79 ± 0.29 μm), Group LB (2.20 ± 0.23 μm) and Group LS (2.31 ± 0.52 μm) demonstrated significantly higher surface roughness (SR) values compared to Group C (1.03 ± 0.11 μm). Group B (10.97 ± 2.88 MPa), Group S (12.07 ± 2.82 MPa), Group LB (12.09 ± 2.08 MPa) and Group LS (13.14 ± 1.45 MPa) demonstrated significantly higher SBS values compared to Group C (6.35 ± 1.21 MPa). Airborne-particle abrasion, silica coating or their combined use with Er:YAG laser system establish durable bond between PEEK and resin; however, only Er:YAG laser treatment has no positive effect on resin-PEEK bond.  相似文献   

13.
This study aimed to investigate the micro-shear bond strength (μSBS) of surface treated CAD-CAM materials to resin cement. The specimens obtained from IPS e.max CAD, Lava Ultimate, Cerasmart and Vita Enamic were divided according to the surface treatment method applied as: no treatment, 3W and 2W Er, Cr:YSGG laser irradiation, sandblasting and 5% hydrofluoric acid (HF) application. Then, μSBS and field emission-scanning electron microscope analysis were performed. Data were analyzed using the Mann Whitney U and the Kruskal Wallis tests. For all materials, the highest μSBS values were demonstrated in HF acid applied groups. Regarding the μSBS values of IPS e.max CAD, no significant differences were found among control, 2W Er, Cr:YSGG laser and sandblasting groups (p?>?0.05). For Cerasmart and Lava Ultimate; 2W Er, Cr:YSGG laser treated group showed significantly lowest μSBS values while there was no significant difference among control, 3W Er, Cr:YSGG and sandblasting groups. HF applied Lava Ultimate and IPS e.max CAD groups exhibited the highest μSBS values among all the groups. For Vita Enamic; significantly lowest μSBS values were obtained in sandblasting group, whereas there was no significant difference among control, 3W Er, Cr:YSGG and 2W Er, Cr:YSGG groups (p?>?0.05). The FE-SEM images of all CAD-CAM materials submitted to surface treatment revealed an increase in surface alterations compared to control groups. It can be concluded that prior to bonding 5% HF acid treatment is the best surface treatment method regarding the bond strength for all CAD-CAM restorative materials. Er, Cr:YSGG laser application with energy level of 3W can be recommended for IPS e.max CAD.  相似文献   

14.
The aim of the present study was to evaluate the effect of water flow rate on the morphological features of dentin and shear bond strength (SBS) of self-etching resin cement after Er,Cr:YSGG laser etching. Dentin specimens obtained from extracted human third molars were randomly assigned to four groups (n = 23), including one that received no laser irradiation (control-group D) and three others with different laser parameters: 2.25 W, 50 Hz, 60% air with water flow rates of 19 mL/min-100% water (group A), 2.25 W, 50 Hz, 6.75 mL/min-50% water (group B), and 2.25 W, and 50 Hz, 2.75 mL/min-25% water (group C). The morphological features of each group were examined with scanning electron microscopy and atomic force microscopy. The SBS of resin cement disks (Panavia F2.0, Kuraray; Tokyo, Japan) (3 mm in diameter and 2 mm in height) to the dentin specimens was measured using a universal testing machine at a cross head speed of 0.5 mm/min. Bond strength values were analyzed with one-way ANOVA/Tukey tests. There were no significant differences between the SBS values of groups A and B (p > 0.05). However, the SBS values of these groups were significantly higher when compared to groups C and D (p < 0.001). Er,Cr:YSGG laser application with water flow rates of 6.75 or 19 mL/min resulted in better dentin surface alterations and increased the SBS of self-etching resin cement to dentin.  相似文献   

15.
Objective: This study aims to evaluate alterations in the root canal dentin after irrigation with EDTA, HEBP, and Chitosan in order to determine the push-out bond strengths of the different root canal sealers on altered dentin surfaces. Materials And Methods: Crowns of 70 maxillary single-rooted teeth were removed to obtain a standardized length of 16 mm. The canals were instrumented using rotary files and the step back technique. The master apical file used in this study was #40. The subgroups were determined based on the chelation agent and the material of the root canal sealer that was used (17% EDTA, 18% HEPB, 0.2% Chitosan, Well Root ST (WRST) or AH Plus). Three slices with 1 mm thickness were cut from the root thirds of each tooth and subjected to a push-out test. The data (MPa) were analyzed using a one-way ANOVA and a Duncan’s multiple comparison test at a level of α = 0.05. Finally, scanning electron microscope (SEM) photographs were taken. Results: Groups that used WRST exhibited significantly higher push-out bond strength values in all subgroups independent of the irrigant that was used (ANOVA, p < 0.05). Group 1 showed higher push-out bond strength than the other AH Plus subgroups. Conclusion: The EDTA improved the push-out bond strength of the AH Plus. The WRST root canal sealer had the highest push-out bond strength and did not depend on the irrigant used.  相似文献   

16.
To assess the effect of Er:YAG and diode lasers on the shear bond strength (SBS) of adhesive systems to bovine dentin submitted to bleaching with a high concentration agent. One hundred and twenty bovine dentin fragments were used. Fragments were distributed into 12 groups (n = 10) considering the bleaching (present or not), surface post-treatment (untreated, Er:YAG laser or diode laser) and adhesive system (total-etching or self-etching). Specimens received two applications of 38% hydrogen peroxide. Er:YAG laser (2940 nm, 200 mJ, 4 Hz) and diode laser (980 nm, 1.5 W) were applied for 15 s on bleached dentin surface. Restoration was performed with resin using split matrix. Specimens were submitted to SBS test and data (MPa) were analyzed by ANOVA and Tukey’s test (α = 0.05). SBS of bleached specimens decreased in comparison with non-bleached (p < 0.05). The highest values were obtained for the post-treatment with Er:YAG laser (p < 0.05). Total-etching adhesive was superior to self-etching system (p < 0.05). The irradiation of bleached dentin with Er:YAG laser followed by the application of the total-etching adhesive had similar SBS to unbleached dentin with no post-treatment (control) (p > 0.05). Er:YAG laser post-treatment followed by the total-etching adhesive system improve the bond strength of restorative material to bleached dentin.  相似文献   

17.
To evaluate the effect of intracanal medicaments on the push-out bond strength of Biodentine in comparison with DiaRoot BioAggregate (BA) when used as apical plugs. Forty single-rooted teeth were prepared using Peeso reamers. The samples were divided into four groups. The intracanal medicaments were applied to the root canals as follows: Group1: a combination of metronidazole–ciprofloxacin–cefaclor, Group2: a combination of metronidazole–ciprofloxacin, Group3: calcium hydroxide, and Group4: no medication. After 21 days, the medicaments were removed. The apical part of each root was horizontally sectioned into 1-mm thick slices. The samples were divided into two subgroups, and the following materials were placed: Biodentine, DiaRoot-BioAggregate. After 48-h incubation, the push-out bond strength was measured. The data were analyzed by a two-way ANOVA. Biodentine showed a significantly higher mean push-out bond strength value than DiaRoot-BioAggregate (P = 0.00). The medications have an effect on the push-out bond strength of both materials (P = 0.002). Biodentine showed better adhesive performance as an apical plug than DiaRoot-BioAggregate.  相似文献   

18.
The aim of this study was to compare the effects of different in-office bleaching techniques and acid/laser etching on bond strength of orthodontic brackets. Ninety-six extracted human premolar teeth were used in the study. The teeth were randomly divided into four groups according to different in-office bleaching techniques (n = 24); Group I: Diode laser-assisted bleaching, Group II: Er:YAG laser-assisted bleaching, Group III: In-office bleaching with LED, Group IV: Unbleached (control). After the samples were kept in artificial saliva for 2 weeks, each group were randomly divided into 2 subgroups according to etching methods; aacid etching; blaser etching. For laser etching Er,Cr:YSGG laser was used at 1.5 W, 15 Hz with 140 μs pulse duration for 20 s. For acid etching, 37% phosphoric acid was used for 30 s. The shear bond strength testing was performed using Instron Testing Machine with a crosshead speed of 1mm/min. Adhesive Remnant Index (ARI) scores were also measured. Data was analyzed using two-way ANOVA, Bonferroni, Kruskal Wallis and Mann Whitney U tests (p < 0.05). No statistically significant differences were found between bleaching groups and control (p > 0.05). There were statistically significant differences between acid and laser etching within each group (p < 0.05). Acid etching caused significantly higher bond strength values (p < 0.05). While no statistically significant differences were observed between the ARI scores of bleaching and control groups (p > 0.05), acid etching caused statistically higher ARI scores than laser etching groups (p < 0.05). In conclusion in-office bleaching either with LED or laser before bracket bonding did not affect bond strength. Prior to bracket bonding, acid etching of enamel caused higher shear bond strength values than laser etching.  相似文献   

19.
This study evaluated the pull-out strength of different glass fiber posts and measured volume of cement and voids in the cement in the root canal utilizing micro-computerized tomography (micro-CT) analysis after they were cemented with two different luting cements. Canine teeth (N = 40) were endodontically treated and randomly divided into four groups depending on the fiber post and the cement type (n = 10 per group) as follows: Group RU: (RelyX + RelyX U200), Group PU: (PINpost + RelyX U200), Group RF: (RelyX + FujiCEM 2), Group PF: (PINpost + FujiCEM 2). Each tooth was scanned using micro-CT and the percentage of cement and void volume at the coronal, middle, and apical levels was calculated. Pull-out tests were performed by applying tensile load parallel to the long axis of the posts (0.5 mm/min). Data were analyzed using, ANOVA, Kruskal–Wallis, and Mann–Whitney U tests (α = 0.05). Regardless of cement type, the percentage (%) of cement volume in the RelyX post groups (RU:31–36; RF:29–40) was significantly higher than that in the PINpost groups (PU:19–23; PF:18–22) (p < 0.05). The percentage of void volume at the PINpost groups (PU:6–11; PF:8–13) was significantly lower than that in the RelyX groups (RU:2; RF:3) (p < 0.05). No significant differences were observed in pull-out strength (N) between the four experimental groups (RU:358.8 ± 56.2; RF:299 ± 64.8; PU:311.9 ± 61.3; PF:293.1 ± 91.3) (p > 0.05). The micro-CT analysis demonstrated that the percentage of cement and void volumes vary depending on the type of fiber post and cement used. No correlation between cement, void volume, and pull-out strength was observed.  相似文献   

20.
To evaluate the influence of calcium-hydroxide(CH) with different vehicles on the push-out bond strength of different canal sealers to radicular dentin. 152 decrowned single-rooted human teeth were used. After preparation of root canals with nickel-titanium rotary files, 8 roots served as control groups. Then, the roots were divided as follows: (1) Calasept and (2) Surepaste (n = 72). Roots were further subgrouped according to the CH removal techniques: (1) %17 ethylenediaminetetraacetic acid (EDTA) + rotary file, (2) %17EDTA + hand file, and (3) %17EDTA (n = 24). Eight roots from each group sectioned longitudinally, divided into two pairs and photographed by stereomicroscope (n = 16). The remaining 16 roots in CH intracanal dressing groups were further divided into 2 subgroups according to the sealer used: (1) AH-Plus-jet and (2) Apexit-Plus (n = 8). Bond strengths of the root canal sealers to root canal dentin were measured using a push-out test setup. The data were statistically analyzed using multivariate analysis of variance p = 0.05. The push-out bond strength values were significantly affected by type of vehicle and the removal techniques (p < 0.05). The mean bond strength of AH-Plus-jet was significantly higher than Apexit-Plus, regardless of type of vehicle and the removal techniques (p < 0.05). There was no difference between vehicles on CH removal (p > 0.05). When examining the removal techniques, only irrigation with %17 EDTA left significantly larger amount of residue (p < 0.05). AH-Plus-jet showed better dislocation resistance than Apexit-Plus. Type of vehicle does not play a fundamental role in the degree of persistence of CH residues on the dentin walls. Instrumentation improves the removal efficiency of CH from root canal.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号