首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 671 毫秒
1.
An air‐drawing model of polypropylene (PP) polymer and an air jet flow field model in wide‐slot positive‐pressure spunbonding process are established. The influences of the density and the specific heat capacity of polymer melt at constant pressure changing with polymer temperature on the fiber diameter have been studied. The predicted fiber diameter agrees with the experimental data as well. The effects of the processing parameters on the fiber diameter have been investigated. The air jet flow field model is solved by means of the finite difference method. The numerical simulation computation results of distribution of the fiber diameter match quite well with the experimental data. The air‐drawing model of polymers is solved with the help of the distributions of the air velocity. It can be concluded that the higher air velocity and air temperature can yield the finer fibers diameter. The higher inlet pressure, longer drawing segment length, smaller air knife edge, longer exit length, smaller slot width, and smaller jet angle can all cause higher air velocity and air pressure along z‐axis position, which are beneficial to the air drawing of the polymer melt and thus to reduce the fiber diameter. The experimental results show that the agreement between the predicted results and the experimental measured data is very better, which verifies the reliability of these models. Also, they reveal great prospects for this work in the field of computer‐assisted design (CAD) of spunbonding process. POLYM. ENG. SCI., 58:1371–1380, 2018. © 2017 Society of Plastics Engineers  相似文献   

2.
In injection molding, the pressure in the cavity usually reaches the atmospheric pressure before the ejection, therefore the thermal contact between polymer and mold is modified. This paper aims to evaluate the nature of the thermal contact between the polymer and the mold during the holding and cooling phase. An experimental plate mold has been designed to study this phenomenon. Thermal sensors facing each other and pressure sensors have been set in the mold. An inverse method is used to determine the heat flux density crossing the polymer mold interface, and the mold surface temperature. Then, a second inverse algorithm allows to determine the temperature profile at the end of the filling and the time evolution of the thermal contact resistance (TCR). Finally, the polymer temperature distribution in the thickness is determined between the thermal sensors. The results of this study show that the TCR between the polymer and the mold is not negligible and not constant with time. The polymer temperature at the surface can be 20°C higher than the mold surface temperature. Moreover, asymmetric air gaps have been observed when cavity pressure becomes equal to atmospheric pressure, therefore asymmetric temperature profile in the thickness are generated.  相似文献   

3.
A novel luminescent conjugated polymer, poly[{9‐(α‐naphthyl)‐3,6‐divinylenecarbazolylene}‐altco‐(1,4‐phenylene)] (PNVCP), bearing alternated 9‐(α‐naphthyl)‐carbazole and benzene units, was synthesized via a Wittig–Horner reaction. The solubility, thermal, and optical properties were investigated. It was soluble in common organic solvents, such as tetrahydrofuran and 1,2‐dichlororoethane. Thermogravimetric analysis and differential scanning calorimetry showed that the conjugated polymer exhibited good thermal stability up to 496°C with a glass‐transition temperature higher than 110°C. The photoluminescence properties were studied. The polymer emits blue light and the quantum yield is 93% in solution. The emission spectra exhibited an obvious solvent effect. With the increase of the polarity of the solvents, the fluorescence spectra changed obviously and appeared to be redshifted at room temperature. The redshift was more obvious in aromatic solvents than in aliphatic solvents. When N,N‐dimethylaniline was gradually added into the solution of the conjugated polymer, the emission intensity of the fluorescence decreased. In comparison, the emission intensity of the polymer showed invariability when 1,4‐dicyanobenzene was added into the polymer solution. Moreover, the fluorescence of the polymer could be effectively quenched by fullerene. Overall, the synthesized polymer is a potential candidate material for fabrication of polymeric light‐emitting devices. © 2006 Wiley Periodicals, Inc. J Appl Polym Sci 100: 923–927, 2006  相似文献   

4.
A poly(DL ‐lactic‐co‐glycolic acid) (PLGA)‐sandwiched cell/fibrin construct was fabricated to overcome the weak mechanical properties of cell/hydrogel mixtures. This construct was formed with a step‐by‐step mold/extraction method to generate a middle smooth muscle layer of natural blood vessels. A desired three‐layer construct, as an integrated entity with optimized inner structures, was achieved by the control of the size of the molds, the concentration of the polymer systems, and the temperature of the extraction and polymerization processes. The constructs were fabricated with the following dimensions: length = 10–25 mm, diameter >2 mm, and wall thickness = 0.6–2 mm. Different microstructures in different layers of the sandwiched structure resulted in different functions. The pore structure in the inner PLGA and middle fibrin layers was beneficial for nutrient transference, whereas the solid structure without pores in the outmost surface of the outer PLGA layer could prevent fluid from leaking during in vitro culturing and in vivo implantation. This study showed that this can be a promising approach for the fabrication of synthetic‐polymer‐sandwiched viable cell/hydrogel constructs for wide potential application in complex organ manufacturing. © 2010 Wiley Periodicals, Inc. J Appl Polym Sci, 2011  相似文献   

5.
The free‐radical copolymerization of water‐soluble poly(1‐vinyl‐2‐pyrrolidone‐co‐hydroxyethylmethacrylate) was carried out with a feed monomer ratio of 75:25 mol %, and the total monomer concentration was 2.67M. The synthesis of the copolymer was carried out in dioxane at 70°C with benzoyl peroxide as the initiator. The copolymer composition was obtained with elemental analysis and 1H‐NMR spectroscopy. The water‐soluble polymer was characterized with elemental analysis, Fourier transform infrared, 1H‐ and 13C‐NMR spectroscopy, and thermal analysis. Additionally, viscosimetric measurements of the copolymer were performed. The thermal behavior of the copolymer and its complexes were investigated with differential scanning calorimetry (DSC) and thermogravimetry techniques under a nitrogen atmosphere. The copolymer showed high thermal stability and a glass transition in the DSC curves. The separation of various metal ions by the water‐soluble poly(1‐vinyl‐2‐pyrrolidone‐co‐hydroxyethylmethacrylate) reagent in the aqueous phase with liquid‐phase polymer‐based retention was investigated. The method was based on the retention of inorganic ions by this polymer in a membrane filtration cell and subsequent separation of low‐molar‐mass species from the polymer/metal‐ion complex formed. Poly(1‐vinyl‐2‐pyrrolidone‐co‐hydroxyethylmethacrylate) could bind metal ions such as Cr(III), Co(II), Zn(II), Ni(II), Cu(II), Cd(II), and Fe(III) in aqueous solutions at pHs 3, 5, and 7. The retention percentage for all the metal ions in the polymer was increased at pH 7, at which the maximum retention capacity could be observed. The interaction of inorganic ions with the hydrophilic polymer was determined as a function of the pH and filtration factor. © 2006 Wiley Periodicals, Inc. J Appl Polym Sci 100: 178–185, 2006  相似文献   

6.
In this study, two different carbons (synthetic graphite particles and carbon fiber) were added to nylon 6,6, and the resulting composites were tested for both the through‐plane thermal conductivity kthru and the in‐plane thermal conductivity kin, using the transient plane source method. The first goal of this work was to use a finite element model to develop a procedure to accurately measure the material properties using this relatively new analytical procedure. Reproducible data can be obtained for nylon 6,6 polymer composites, by choosing a power dissipation (an input parameter to the transient plane source method) corresponding to a sensor temperature increase of 2 K above the initial temperature after 5 s. The second goal of this work was to develop a simple empirical model for the in‐plane thermal conductivity, which is easily measured with the transient plane source method. The results show that the product of the through‐plane and in‐plane thermal conductivities is a linear function of the volume percent ϕ. As the through‐plane thermal conductivity of these composites is accurately predicted with a modified Nielsen model, this empirical relationship can be used to estimate in‐plane thermal conductivities for a range of applications. POLYM. COMPOS. 27:1–7, 2006. © 2005 Society of Plastics Engineers  相似文献   

7.
Thermal stability of a recently synthesized polymeric methyl‐di(phenylethynyl)silane (MDPES) resin was studied using a number of thermal and spectrometric analytical techniques. The polymer exhibits extremely high thermal stability. Thermogravimetric analysis (TGA) shows that the temperature of 5% weight loss (Td5) was 615°C and total weight loss at 800°C was 8.9%, in nitrogen atmosphere, while in air, Td5 was found to be 562°C, and total weight loss at 800°C was found to be 55.8% of the initial weight. Differential thermal degradation (DTG) studies show that the thermal degradation of MDPES resin was single‐stage in air and two‐stage in nitrogen. The thermal degradation kinetics was studied using dynamic TGA, and the apparent activation energies were estimated to be 120.5 and 114.8 kJ/mol in air, respectively, by Kissinger and Coats–Redfern method. The white flaky pyrolysis residue was identified to be silicon dioxide by FTIR and EDS, indicating that the thermal stability of polymer may be enhanced by the formation of a thin silicon dioxide film on the material surface. © 2006 Wiley Periodicals, Inc. J Appl PolymSci 103: 605–610, 2007  相似文献   

8.
High‐frequency proximity heating was used to rapidly heat injection molds. The principle is based on the proximity effect between a pair of mold inserts facing each other with a small gap and forming a high‐frequency electric loop. Because of the proximity effect, the high‐frequency current will flow at the inner surfaces of the facing pair, thus selectively heating the mold surface. With this method, the electrical insulation layer beneath the mold surface can be eliminated, resulting in a mold insert made of a single metal. A mold with a cavity of 25 × 50 mm2 was constructed with careful design on its electrical, structural, and thermal performance. Air pockets with reinforcing ribs were embedded right beneath the mold surface for enhancing the heating performance. The resulting mold cavity can be rapidly heated from room temperature to about 240°C in 5 s with an apparent heating power of 93 W/cm2. The new mold heating method was applied to thin‐wall molding and micromolding, and in all testing cases, short cycle times less than a minute were achieved. POLYM. ENG. SCI. 46:938–945, 2006. © 2006 Society of Plastics Engineers  相似文献   

9.
Several versions of free‐volume theory have been proposed to correlate or predict the solvent diffusion coefficient of a polymer/solvent system. The quantity of free volume is usually determined by the Williams–Landel–Ferry (WLF) equation from viscosity data of the pure component in these theories. Free volume has been extensively discussed in different equation‐of‐state models for a polymer. Among these models, the Simha–Somcynsky (SS) hole model is the best one to describe the crystalline polymer, because it describes it very approximately close to the real structure of a crystalline polymer. In this article, we calculated the fractions of the hole free volume for several different polymers at the glass transition temperature and found that they are very close to a constant 0.025 by the SS equation of state. It is quite consistent with the value that is determined from the WLF equation. Therefore, the free volume of a crystalline polymer below the glass transition temperature (Tg) is available from the SS equation. When above the Tg, it is assumed that the volume added in thermal expansion is the only contribution of the hole free volume. Thus, a new predictive free‐volume theory was proposed. The free volume of a polymer in the new predictive equation can be estimated by the SS equation of state and the thermal expansion coefficient of a polymer instead of by the viscosity of a polymer. The new predictive theory is applied to calculate the solvent self‐diffusion coefficient and the solvent mutual‐diffusion coefficient at different temperatures and over most of the concentration range. The results show that the predicted values are in good agreement with the experimental data in most cases. © 2000 John Wiley & Sons, Inc. J Appl Polym Sci 77: 428–436, 2000  相似文献   

10.
Differential scanning calorimetry (DSC) was used to evaluate the thermal behavior and isothermal crystallization kinetics of poly(ethylene terephthalate) (PET) copolymers containing 2‐methyl‐1,3‐propanediol as a comonomer unit. The addition of comonomer reduces the melting temperature and decreases the range between the glass transition and melting point. The rate of crystallization is also decreased with the addition of this comonomer. In this case it appears that the more flexible glycol group does not significantly increase crystallization rates by promoting chain folding during crystallization, as has been suggested for some other glycol‐modified PET copolyesters. The melting behavior following isothermal crystallization was examined using a Hoffman–Weeks approach, showing very good linearity for all copolymers tested, and predicted an equilibrium melting temperature (Tm0) of 280.0°C for PET homopolymer, in agreement with literature values. The remaining copolymers showed a marked decrease in Tm0 with increasing copolymer composition. The results of this study support the claim that these comonomers are excluded from the polymer crystal during growth. © 2006 Wiley Periodicals, Inc. J Appl Polym Sci 100: 2592–2603, 2006  相似文献   

11.
Polystyrene‐block‐poly(4‐vinylpyridine) (PS‐b‐P4VP) was synthesized by two steps of reversible addition‐fragmentation transfer (RAFT) polymerization of styrene (St) and 4‐vinylpyridine (4VP) successively. After P4VP block was quaternized with CH3I, PS‐b‐quaternized P4VP/montmorillonite (PS‐b‐QP4VP/MMT) nanocomposites were prepared by cationic exchange reactions of quaternary ammonium ion in the PS‐b‐QP4VP with ions in MMT. The results obtained from X‐ray diffraction (XRD) and transmission electron microscopy (TEM) images demonstrate that the block copolymer/MMT nanocomposites are of intercalated and exfoliated structures, and also a small amount of silicates' layers remained in the original structure; differential scanning calorimetry (DSC) and thermal gravimetric analysis (TGA) results show that the nanocomposites displayed higher glass transition temperature (Tg) and higher thermal stability than that of the corresponding copolymers. The blending of PS‐b‐QP4VP/MMT with commercial PS makes MMT to be further separated, and the MMT was homogeneously dispersed in the polymer matrix. The enhancement of thermal stability of PS/PS‐b‐QP4VP/MMT is about 20°C in comparison with commercial PS. © 2006 Wiley Periodicals, Inc. J Appl Polym Sci 102:1950–1958, 2006  相似文献   

12.
A dual layer silicon carbide (SiC) coating including inner porous SiC (p‐SiC) layer and outer dense SiC (d‐SiC) layer was fabricated on the matrix graphite (MG) spheres of high‐temperature gas‐cooled reactor fuel elements by pack cementation and fluidized‐bed chemical vapor deposition process to improve the oxidation‐resistant property. Microstructure of the coating demonstrates different density and structure of the two SiC layers with no obvious boundaries between them. Weight gain curves of oxidation tests at 1773 K for 200 hours show that the coating could effectively protected the MG sphere by isolating the air infiltration with p‐SiC layer as the main functional layer and d‐SiC layer as the transition layer to improve the bond strength. Due to the transition function of p‐SiC layer, the coated spheres could understand more than 50 times thermal shocking tests from 1773 K to room temperature with no stress cracking.  相似文献   

13.
Abstract

In the rotational moulding process, the internal air temperature has been widely recognised as a tool to predict an optimum cycle time. This paper presents a new numerical approach to predict the internal air temperature in a two-dimensional (2-D) static model without requiring the consideration of the tumbling motion of polymer powder. The initial non-isothermal heating of the static model is actually formed by two changeable plastic beds (stagnant and mixing beds), which represent the actual stagnant and mixing pools inside a rotating mould respectively. In the numerical approach, the lumped-parameter system and coincident node technique are proposed to incorporate with the Galerkin Finite Element Method in order to account for the complex thermal interaction of the internal air. It helps to overcome the difficulty of multidimensional static models in predicting an accurate internal air temperature during the heating stage of rotationally powdery plastic. Importantly, the predicted temperature profiles of the internal air, oven times for different part thicknesses and process conditions accord with the available experimental results.  相似文献   

14.
Mold temperature is one of the key factors affecting the morphology and quality of plastic parts. This article explores the melt flow phenomena in a vario‐thermal mold cavity. A coupled numerical method, considering the conjugate heat transfer between the mold and melt, is developed for the melt flow simulation. Mold temperature variations and melt flow phenomena for short shot injection in an electrical heated mold cavity are numerically studied and verified by experiments. The results indicate that the melt flow length and cavity filling ratio increase significantly with the elongation of the preheating time before injection. Melt filling ratio increased nearly linearly with the increasing of electric heating time. The smaller the injection pressure is, the bigger the relative filling ratio increment is. Therefore, polymer melt can flow much longer or the mold cavity can be filled up with a smaller injection pressure when the cavity is preheated. © 2017 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2017 , 134, 45193.  相似文献   

15.
The structure and the thermodegradation behavior of both poly(methyl methacrylate)‐co‐poly(3‐tri(methoxysilyil)propyl methacrylate) polymer modified with silyl groups and of intercalated poly(methyl methacrylate)‐co‐poly(3‐tri(methoxysilyil)propyl methacrylate)/Cloisite 15A? nanocomposite have been in situ probed. The structural feature were comparatively studied by Fourier transform infrared spectroscopy (FTIR), 13C and 29Si nuclear magnetic resonance (NMR), and small angle X‐ray scattering (SAXS) measurements. The intercalation of polymer in the interlayer galleries was evidenced by the increment of the basal distance from 31 to 45 Å. The variation of this interlayer distance as function of temperature was followed by in situ SAXS. Pristine polymer decomposition pathway depends on the atmosphere, presenting two steps under air and three under N2. The nanocomposites are more stable than polymer, and this thermal improvement is proportional to the clay loading. The experimental results indicate that clay nanoparticles play several different roles in polymer stabilization, among them, diffusion barrier, charring, and suppression of degradation steps by chemical reactions between polymer and clay. Charring is atmosphere dependent, occurring more pronounced under air. POLYM. ENG. SCI., 2013. © 2012 Society of Plastics Engineers  相似文献   

16.
To develop conjugated polymers with low bandgap, deep HOMO level, and good solubility, a new conjugated alternating copolymer PC‐DODTBT based on N‐9′‐heptadecanyl‐2,7‐carbazole and 5, 6‐bis(octyloxy)‐4,7‐di(thiophen‐2‐yl)benzothiadiazole was synthesized by Suzuki cross‐coupling polymerization reaction. The polymer reveals excellent solubility and thermal stability with the decomposition temperature (5% weight loss) of 327°C. The HOMO level of PC‐DODTBT is ‐5.11 eV, indicating that the polymer has relatively deep HOMO level. The hole mobility of PC‐DODTBT as deduced from SCLC method was found to be 2.03 × 10?4 cm2/Versus Polymer solar cells (PSCs) based on the blends of PC‐DODTBT and [6,6]‐phenyl‐C71‐butyric acid methyl ester (PC71BM) with a weight ratio of 1:2.5 were fabricated. Under AM 1.5 (AM, air mass), 100 mW/cm?2 illumination, the devices were found to exhibit an open‐circuit voltage (Voc) of 0.73 V, short‐circuit current density (Jsc) of 5.63 mA/cm?2, and a power conversion efficiency (PCE) of 1.44%. This photovoltaic performance indicates that the copolymer is promising for polymer solar cells applications. © 2011 Wiley Periodicals, Inc. J Appl Polym Sci, 2011  相似文献   

17.
Three epoxy‐amine thermoset systems were cured at a low ambient temperature. Evolution of the reaction kinetics and molecular structure during cure at the sub‐glass transition temperature was followed by DSC and chemorheology experiments. The effect of vitrification and the reaction exotherm on curing and final mechanical properties of the epoxy thermosets was determined. Thermomechanical properties of the low‐temperature cured systems depend on the reaction kinetics and volume of the reaction mixture. Curing of the fast‐reacting system in a large volume (12‐mm thick layer) resulted in the material with Tg exceeding the cure temperature by 70–80°C because of an exothermal temperature rise. However, the reaction in a too large volume (50‐mm layer) led to thermal degradation of the network. In contrast, thin layers (1.5 mm) were severely undercured. Well‐cured epoxy thermosets could be prepared at sub‐Tg temperatures by optimizing reaction conditions. © 2006 Wiley Periodicals, Inc. J Appl Polym Sci 99: 3669–3676, 2006  相似文献   

18.
Microcapsules with phenolic resin (PFR) shell and n‐hexadecane (HD) core were prepared by controlled precipitation of the polymer from droplets of oil‐in‐water emulsion, followed by a heat‐curing process. The droplets of the oil phase are composed of a polymer (PFR), a good solvent (ethyl acetate), and a poor solvent (HD) for the polymer. Removal of the good solvent from the droplets leads to the formation of microcapsules with the poor solvent encapsulated by the polymer. The microstructure, morphology, and phase‐change property as well as thermal stability of the microcapsules were systematically characterized by scanning electron microscope (SEM), Fourier transform infrared spectroscopy (FTIR), differential scanning calorimety (DSC), and thermogravimetric analysis (TGA). The phase‐change microcapsules exhibit smooth and perfect structure, and the shell thickness is a constant fraction of the capsule radius. The initial weight loss temperature of the microcapsules was determined to be 330°C in N2 and 255°C in air, respectively, while that of the bulk HD is only about 120°C both in air and N2 atmospheres. The weight loss mechanism of the microcapsules in different atmosphere is not the same, changing from the pyrolysis temperature of the core material in N2 to the evaporation of core material caused by the fracture of shell material in air. The melting point of HD in microcapsules is slightly lower than that of bulk HD, and a supercooling was observed upon crystallization. © 2007 Wiley Periodicals, Inc. J Appl Polym Sci 2007  相似文献   

19.
The ordered honeycomb structures of poly(L ‐lactic‐co‐glycolic acid) and poly(D ,L ‐lactic‐co‐glycolic acid) fabricated in a humid atmosphere were reported in this paper. It was found that surfactants were important in the formation of honeycomb films of hydrophobic polymer. The affecting factors, such as the environment temperature, the atmosphere humidity, and the concentration of the polymer solution of the honeycomb porous structure, were also tested. © 2006 Wiley Periodicals, Inc. J Appl Polym Sci 100: 1013–1018, 2006  相似文献   

20.
The kinetics of the cure reaction for a system of o‐cresol‐formaldehyde epoxy resin (o‐CFER), 3‐methyl‐tetrahydrophthalic anhydride (MeTHPA), N,N‐dimethyl‐benzylamine, and organic montmorillonite(O‐MMT) were investigated by means of X‐ray diffraction (XRD) and differential scanning calorimetry (DSC). The XRD result indicates that an exfoliated nanocomposite was obtained. The analysis of DSC data indicated the behavior was shown in the first stages of the cure for the system, which could be well described by the model proposed by Kamal. In the later stages, the reaction is mainly controlled by diffusion, and diffusion factor, f(α), was introduced into Kamal's equation. In this way, the curing kinetics was predicted well over the entire range of conversion. Molecular mechanism for curing reaction was discussed. The thermal degradation kinetics of the system were investigated by thermogravimetric analysis (TGA), which revealed that with the increase of O‐MMT content, TG curves shift to higher temperature. © 2006 Wiley Periodicals, Inc. J Appl Polym Sci 101: 3023–3032, 2006  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号