首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 353 毫秒
1.
In order to better understand the toughening mechanism in polyoxymethylene (POM)/thermoplastic polyurethane (TPU) blends and obtain ‘super‐toughened’ POM, we carried out an investigation on the notched impact strength, fractured surface, inter‐particle distance and spherulite size of POM as a function of the TPU content. A compatibilizer, namely polystyrene‐block‐poly(ethylene–butylene)‐block‐polystyrene, grafted with maleic anhydride (SEBS‐graft‐MA), was used to enhance the interfacial interaction between the POM and TPU. The impact strength is found to increase in two steps as a function of TPU content, namely a linear increase at the very beginning, and then a jump of impact strength is seen when the TPU content is larger than 30 wt%. A ‘supertough behavior’ is not observed for POM/TPU blends at room temperature, but can be achieved after adding 5 wt% of SEBS‐graft‐MA as the compatibilizer. The impact strength was found to depend not only on the interparticle distance but also on the interfacial interactions between POM and TPU. The dependence of impact strength on crystal size is considered for the first time, and a single curve is constructed, regardless of the composition and interfacial interactions. Our results indicate that the crystal size of POM indeed plays a role in determining the toughness, and has to be considered when discussing the toughening mechanism. Copyright © 2004 Society of Chemical Industry  相似文献   

2.
含异氰酸酯基的低聚物和聚醚增容改性POM/TPU共混物   总被引:2,自引:0,他引:2       下载免费PDF全文
刘春林  周如东  吴盾  陈玲红 《化工学报》2008,59(9):2377-2383
利用双螺杆挤出机制备了聚甲醛(POM)/热塑性聚氨酯弹性体(TPU)、POM/TPU/含异氰酸酯基的低聚物(Z)以及POM/TPU/Z/聚醚3种共混物。采用力学性能测试、差示扫描量热分析(DSC)、偏光显微镜(PLM)、傅里叶转换红外线光谱 (FTIR)、扫描电子显微镜(SEM)、动态力学性能分析(DMA)等,研究了3种共混物的力学性能、结晶行为及形态结构。结果表明:共混物的缺口冲击强度和断裂伸长率随TPU含量的增加而提高;异氰酸酯基低聚物(Z)和聚醚在促进分散相分散、增强两相间的相容性方面发挥重要作用,降低了聚甲醛的结晶度,能够有效地提高共混物的缺口冲击强度和断裂伸长率。  相似文献   

3.
Bio‐based blends of commercially available polyester based bio thermoplastic polyurethane (TPU) and castor oil based polyamide 11 (PA11) of different ratios are prepared by melt processing. The blends properties such as shape memory behavior through unconstrained and constrained recovery, interfacial interaction, morphology, dynamic mechanical, rheological, and mechanical behavior are studied. A strong interface between the two polymeric phases due to hydrogen bonding observed through morphology indicates that TPU and PA11 are well compatible. The complex viscosity of blends ranges between that of neat PA11 and TPU. Thermal analysis shows that higher the TPU content lower the melting point (Tm ) corresponding to PA11 and the crystallization temperature (Tc ) remains unaltered. Adding TPU to PA11 ductility and impact strength of the blends increases significantly with the small reduction in their tensile strength. Shape memory behavior investigation reveals that, blends recover almost 95% of the applied deformation when heated at zero load and they recovered a stress of 1.8–3.2 MPa in constrained recovery during three consecutive thermomechanical cycles. The reported results on bioalloys promotes the usage in multidisciplinary field of intelligent devices, such as ergonomic grips and sports shields. © 2017 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2017 , 134 , 44794.  相似文献   

4.
TPU增韧改性POM的研究   总被引:1,自引:0,他引:1  
利用双螺杆挤出机制备了聚甲醛(POM)/热塑性聚氨酯弹性体(TPU)和POM/TPU/异氰酸酯预聚物(Z)共混物.采用力学性能测试方法、偏光显微镜(PLM)、傅立叶转换红外线光谱 (FTIR)、扫描电子显微镜(SEM)等研究了共混物的力学性能、结晶行为及形态结构.结果表明,不同种类TPU增韧的共混物的缺口冲击强度和断裂伸长率都随TPU含量的增加而增加,TPU(95A)增韧的POM/TPU共混物的刚性较好,TPU(250)增韧的POM/TPU共混物的韧性较好;Z能促进TPU在基体树脂中的均匀分散,增强两相界面的粘结力,并能细化球晶.  相似文献   

5.
Blends of compatibilized polyoxymethylene (POM)/ethylene butylacrylate copolymer (EBA)/ethylene‐methyl acrylate‐glycidyl methacrylate copolymer (EMA‐GMA) and uncompatibilized POM/EBA were investigated. The notched impact strength of the compatibilized blends was higher than that of their uncompatibilized counterparts. The toughness of the POM blends was improved obviously with relatively low loading of EBA. Fourier transform infrared spectroscopy (FTIR) spectra of EMA‐GMA, pure POM, and POM/EBA/EMA‐GMA blends indicated that epoxy groups of EMA‐GMA reacted with terminal hydroxyl groups of POM molecular chains. The glass‐transition temperature (Tg) values of the POM matrix and the EBA phase were observed shifted to each other in the presence of EMA‐GMA compatibilizer indicating that the compatibilized blends had better compatibility than their uncompatibilized counterparts. With the addition of EBA to POM, both the compatibilized and uncompatibilized blends showed higher onset degradation temperature (Td) than that of pure POM and the Td values of the compatibilized blends were higher than those of their uncompatibilized counterparts. The scanning electron microscopy showed better EBA particles distribution state in the compatibilized system than in the uncompatibilized one. The compatibilized blend with an obvious rougher impact fracture surface indicated the ductile fracture mode. POLYM. ENG. SCI., 58:1127–1134, 2018. © 2017 Society of Plastics Engineers  相似文献   

6.
Unmodified blends of two thermoplastic polyurethanes (TPU) and six polyolefines were used to study the influence of the component viscosities on the blend morphology and mechanical properties. Blends were produced by melt mixing using a twin screw extruder. Interactions between the blend components could not be detected by DSC, DMA, selective extraction, and SEM micrographs of cryofractures. The variation in tensile strength with blend composition produce a U-shaped curve with the minimum between 40 and 60 wt % of polyolefine. At similar viscosity ratios (ηd/ηm), blends with polyether based TPU (TPU-eth) have a finer morphology than blends with polyester based TPU (TPU-est). This is due to the lower surface free energy of the polyether soft segments compared to the polyester soft segments. Different morphologies also lead to changes in mechanical behavior. Blends with TPU-eth show a lower decrease in tensile strength with blend composition than blends with TPU-est. The viscosity ratio between TPU and polyolefines can be directly correlated to the blend morphology obtained under similar blending conditions. TPU/PE blends show a lower dispersity than TPU/PP blends, due to the higher viscosity ratios of TPU/PE blends. This results in a greater reduction in tensile strength with the disperse phase content. © 1997 John Wiley & Sons, Inc. J Appl Polym Sci 64: 749–762, 1997  相似文献   

7.
Nylon 1010 blends with ethylene–vinyl acetate copolymer (EVA) and maleated ethylene–vinyl acetate (EVA‐g‐MAH) were prepared through melt blending. The vinyl acetate (VA) content and viscosity of EVA significantly affected the notched impact strength of nylon/EVA/EVA‐g‐MAH (80/15/5) blends. The nylon/EVA/EVA‐g‐MAH blends with high notched impact strength (over 60 kJ/m2) were obtained when the VA content in EVA ranged from 28 to 60 wt%. The effect of VA content on the notched impact strength of blends was related to the glass transition temperature for EVA with high VA content and crystallinity for EVA with low VA content. For nylon blends with EVA with the same VA content, low viscosity of EVA led to high notched impact strength. Fracture morphology of nylon/EVA/EVA‐g‐MAH (80/15/5) blends showed that blends with ductile fracture behavior usually had large matrix plastic deformation, which was the main energy dissipation mechanism. A relationship between the notched impact strength and the morphology of nylon/EVA/EVA‐g‐MAH (80/15/5) blends was well correlated by the interparticle distance model. POLYM. ENG. SCI., 2009. © 2009 Society of Plastics Engineers  相似文献   

8.
Co‐continuous amorphous copolyester (PETG)/polyoxymethylene (POM) (50/50 wt%/wt%) blends were prepared using a twin screw extruder followed compression molding. Two types of thermoplastic polyurethane (TPU) (i.e., polyester‐based and polyether‐based) were used to compatibilize the blends system. The thermal properties were characterized by using differential scanning calorimetry (DSC). The mechanical properties of the co‐continuous PETG/POM blends were studies through flexural and single‐edge notch tensile test (SEN‐T). The SEN‐T test was performed at three different testing speeds; 1, 100, and 500 mm/min. Scanning electron microscope (SEM) was used to access the fracture surface morphology. The flexural strength of the PETG/POM blends was decreased in the presence of TPU. This was attributed to the elastomeric nature of the TPU. The compatibilizing effects of TPU on the PETG/POM blends were proven by moderate improvement in the fracture toughness and confirmed by the SEM observation. The SEN‐T fractured surface of the compatibilized blends showed gross matrix shear yielding as compared to the uncompatibilized system. The Kc values of the PETG/POM blends decreased as the testing speed increased. The optimum toughening effect was observed in PETG/POM blends compatibilized with polyether‐based TPU at testing speed of 100 mm/min. The polyether‐based TPU is a more efficient compatibilizer, because the amount required is one‐half that of the polyester‐based counterpart to achieve the same Kc value. This was attributed to the elastomeric nature of the polyether‐based TPU. The softer nature of polyether‐based TPU could provide better toughening effect than the polyester‐based TPU, which is relatively harder in nature. POLYM. ENG. SCI., 45:710–719, 2005. © 2005 Society of Plastics Engineers  相似文献   

9.
Two kinds of polymer blends, polyacetals (POMs) and ethylene–propylene–diene terpolymer (EPDM), have been prepared by mechanical blending. The rubbery EPDM was added to the rigid POM matrix to increase toughness. The mechanical, physical, thermal, dynamic mechanical, and morphological properties of these samples have been measured. The notched Izod impact strength and the elongation of the blends reaches a maximum at 7.5 wt % EPDM content. Scanning electron micrographs (SEM) showed that the domain sizes of EPDM vary from 0.25 to 1.0 μm and were independent of the composition. The POM/EPDM blends were determined to be immiscible by SEM, but showed single Tg behavior as determined by differential scanning calorimetry (DSC) and dynamic mechanical analyses up to 7.5 wt % EPDM. Because of that, the Tg's of POM and EPDM were very similar in value. © 1993 John Wiley & Sons, Inc.  相似文献   

10.
The main goal of this study was impact modification of polyacetal [polyoxymethylene (POM)] with thermoplastic elastomer polyurethane (TPU). We modified the impact strength of POM 10‐fold. The mechanical properties, thermal behavior, and morphology of POM/TPU blends consisting of 5 to 50% of TPU were studied. It was found that the best impact modification of the blends was at 15% concentration of TPU and the maximum elongation at break was at 30% concentration of TPU. The impact strength of POM/TPU blends can be improved by using diphenylmethane diisocyanate (MDI) as compatibilizer. © 2002 Wiley Periodicals, Inc. J Appl Polym Sci 84: 2573–2582, 2002  相似文献   

11.
Effect of Viscosity ratio (ηEPR/ηPP), propylene (C3) content of (ethylene-propylene copolymer (EPR)), and peroxide/coagent treatment on polypropylene (PP)/EPR (80/20 by weight) melt blends were studied in terms of morphological, rheological, thermal, and mechanical properties. As the viscosity ratio increases from approximately 0.8 to 1.2, domain size increased (submicron-1.5 μm), and the degree of supercooling (ΔT) for crystallization increased (37.4–47.8°C) due to the decreased crystallization temperature (Tcc, 122.2–110.8°C). This resulted in larger spherulite size and increased hardness, modulus, and yield strength. With high C3 EPR, total crystallinity (ΔHf) of PP decreased, together with the mechanical properties, except the impact strength. With peroxide/coagent treatment, the spherulite size significantly decreased. The notched Izod impact strength decreased with increasing viscosity ratio, but significantly increased with high C3 EPR and with peroxide/coagent treatments. The results were interpreted in terms of domain size and shape, chemical affinity between PP and EPR, copolymer formation, and main chain scission of PP. © 1996 John Wiley & Sons, Inc.  相似文献   

12.
The properties of olefin block copolymer (OBC)/thermoplastic polyurethane (TPU) blends with or without maleic anhydride (MA) modification were characterized and compared. Compared with the OBC/TPU blends, OBC‐g‐MA/TPU blends displayed finer morphology and reduced domain size in the dispersed phase. The crystallization temperatures of TPU decreased significantly from 155.9 °C (OBC/TPU) to 117.5 °C (OBC‐g‐MA/TPU) at low TPU composition in the blends, indicating the inhibition of crystallization through the sufficient interaction of modified OBC with TPU composition. The modified systems showed higher thermal stability than the unmodified systems over the investigated temperature range due to the enhanced interaction through inter‐bonding. The highest improvement in tensile strength was more than fivefold for OBC‐g‐MA/TPU (50/50) in comparison with its unmodified blend via the enhanced interfacial interaction between OBC‐g‐MA and TPU. This also led to the highest Young's modulus of 77.8 ± 3.9 MPa, about twofold increase, among the investigated blend systems. A corresponding improvement on the ductility was also observed for modified blends. The modification did not vary the glass transition temperature and crystalline structure much, thus the improvement in the mechanical properties was mainly attributed to the improved compatibility and interaction from the compatibilization effect as well as increased viscosity from the crosslinking effect for modified blends. © 2016 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2016 , 133, 43703.  相似文献   

13.
This study investigated the effect of polylactic acid (PLA)/poly‐d ‐lactide (PDLA) stereocomplex (ST) on the improvement of the mechanical and thermal properties of various rubber‐toughened PLAs. In this work, natural rubber (NR), synthetic polyisoprene rubber (IR), silicone rubber (SI), acrylic rubber (ACM), acrylic core–shell rubber (CSR), thermoplastic copolyester (TPE) and thermoplastic polyurethane (TPU) were chosen as the toughening agents. 5 wt% PDLA was melt‐blended with PLA to form ST crystals in the presence of 15 wt% rubber in an internal mixer at 180 °C and 50 rpm. It was found that the melting temperature of ST crystal (Tm,sc) and the impact strength of ST/rubber blends were strongly correlated with the rubber domain size. For the blends of ST with compatible rubbers (ACM, CSR, TPE and TPU), the rubber domain sizes tended to be smaller with higher Tm,sc and higher impact strength than the blends with incompatible rubbers (NR, IR and SI). However, the presence of ST crystals in PLA/incompatible rubber blends, especially the blends with NR and IR, led to a significant increase in the rubber domain size and plunges in tensile toughness and impact strength. On the other hand, the presence of these crystals in PLA/compatible blends did not change the rubber size or the impact strength significantly compared with those without ST crystals except in the case of ST/ACM, which resulted in a large increase in the impact strength. Among all rubber types, CSR provided the highest impact strength for both the PLA and ST systems. © 2019 Society of Chemical Industry  相似文献   

14.
陆波  亢萍 《塑料工业》2005,33(1):14-15,18
分别采用醚型和酯型热塑性聚氨酯(TPU)对聚对苯二甲酸丁二醇酯(PBT)进行增韧改性,并对共混物的性能、形态结构及流变性能进行了研究。结果表明:醚型TPU对PBT有较好的增韧效果,共混物有明显的两相,PBT为连续相,TPU为分散相,当m(PBT)/m(TPU)=100/75时,拉伸屈服强度可达41.7MPa,缺口冲击强度326 J/m,是纯PBT的两倍,断裂伸长率330%;醚型TPU对PBT共混物的表观粘度有较大的影响,当m(PBT)/m(TPU)=100/50时.共混物表观粘度只有纯PBT的20%。  相似文献   

15.
We have developed photocurable bio-derived isosorbide (meth)acrylates for use in photoinitiated additive manufacturing (AM). We have shown that the viscosity of isosorbide-based resins obeyed logarithmic rule of mixtures, and the viscosity values were significantly lower than that of commercial stereolithography (SLA) resins as well as various other urethane (meth)acrylates and bisphenol A (meth)acrylates-containing blends. Using isobornyl acrylate or 4-acryloylmorpholine as reactive diluents, we were able to reduce the brittleness of the isosorbide-based polymers and retain high glass transition temperatures (Tg) of up to 231°C. The isosorbide-based resins were still somewhat brittle but had both greater Tg and strength relative to analogous bisphenol A dimethacrylate resins. Addition of oligomeric urethane (meth)acrylate crosslinkers further improved the mechanical properties of the polymers, whereby the strength approximately doubled to 55 MPa at 25°C, while maintaining high thermal properties, Tg > 190°C, and low viscosities, <140 cP, that are desirable for photoinduced AM applications. Furthermore, we were able to print this resin using SLA which produced specimens with similar moduls, but reduced strength relative to photocured resins and a commercial high temperature SLA resin.  相似文献   

16.
In situ compatibilized melt blends of polyamide 6 (PA‐6) with polyester elastomer (PEL) were prepared in a corotating twin‐screw extruder using two types of coupling agent (CA): diglycidyl ether of bisphenol A (DGEBA) and 1,4‐phenylene bis(2‐oxazoline) (PBO). The notched impact strength of PA‐6 and PA‐6/PEL blends increased with the addition of coupling agent, especially DGEBA, and the maximum impact toughening of the blend was obtained with 0.6 mol % DGEBA, the composition of minimum domain size observed from SEM. Viscosities of the untreated blends increased over those of the base resins at low frequencies. Viscosities of both the base resins and the blends increased with the addition of CA, and the effect was much more pronounced with DGEBA, especially for PA‐6 and PA‐6–rich blends. The crystallization temperature (Tc) of PEL increased over 10°C, whereas the Tc of PA‐6 decreased by 2–3°C in the blends. With the addition of coupling agents, the crystallization melting temperature (Tm) and Tc of PA‐6 decreased by up to 5°C with DGEBA, implying that the crystallization of PA‐6 is disturbed by the in situ formed PA‐6–CA–PEL or PA‐6–CA–PA‐6 type copolymer. © 2004 Wiley Periodicals, Inc. J Appl Polym Sci 91: 3966–3973, 2004  相似文献   

17.
In this article, the relationship between fracture surface feature and impact properties of poly(butylene terephthalate) (PBT) was investigated. The results indicated that the fracture surface morphology of notched impact specimens tested in the temperature range from 196 to 180 °C could be differentiated into brittle (T ≤ 20 °C) and ductile appearances (T > 20 °C). The fracture surface roughness was characterized by surface roughness ratio (R s) and fractal dimension (D b). The fracture mode significantly influenced the relationship between impact strength and fracture surface roughness. When PBT fractured in a brittle mode, both the measured values of R s and D b could correspond to impact strength appropriately. On the contrary, when PBT fractured in a ductile mode, their relationship became not statistically significant because the area of the plastic deformation zone instead of fracture surface roughness might be the major factor influencing impact strength.  相似文献   

18.
The effect of chlorinated polyethylene (CPE) on the impact toughness of acrylonitrile–styrene–acrylic (ASA) terpolymer/styrene–acrylonitrile copolymer (SAN) binary blends (25/75, w/w) was systematically investigated at three different temperatures (?30 °C, 0 °C, and 23 °C). With the addition of 60 phr CPE, the impact strength increased by 11 times at 23 °C and 10 times at 0 °C. However, the toughening effect was not obvious when the testing temperature was ?30 °C. Since the glass‐transition temperature (Tg) of CPE was about ?18.3 °C as measured with dynamic mechanical analysis tests, the polymeric chains of CPE have been “frozen out” at ?30 °C. As a result, CPE evidently cannot improve the toughness of the blend system. The morphology of impact‐fractured surfaces observed by scanning electron microscopy also confirmed the effect of CPE on the impact toughness of ASA/SAN binary blends. The heat distortion temperature remained almost unchanged, indicating that the improvement in toughness did not sacrifice heat resistance. Furthermore, other mechanical properties were evaluated, and the possible interactions among components of the blends were also analyzed by Fourier transform infrared spectra. © 2016 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2016 , 133, 43353.  相似文献   

19.
Blends of an amorphous polylactide (PLA) with three different thermoplastic polyurethane (TPU) grades having various hard segment (HS) contents are prepared at the blending ratio of 85/15 wt% through a twin-screw extruder (TSE) at processing temperatures of 150 and 190°C. Blends of a semicrystalline PLA with 15 wt% of the noted TPU grades are also processed in the TSE at 190°C to investigate the matrix crystallization effect on the morphology and property enhancements. The rheological experiments reveal that the increase in TPU HS content significantly increases the phase compatibility between PLA and TPU as also suggested by the finer morphology of the TPU phase, although the use of lower HS TPUs is more favorable to enhance the ductility and impact properties of the blends.  相似文献   

20.
Novel compatibilized polyoxymethylene/thermoplastic polyurethane (POM/TPU) blends are successfully developed using multifunctional chain extender, Joncryl ADR‐4368, as the compatibilizer. The outstanding compatibilization efficiency of Joncryl on POM/TPU blend was demonstrated by its even higher mechanical properties with only 0.5 wt % of Joncryl than those with 5 wt % of three commonly used compatibilizers. Addition of only 0.5 wt % Joncryl can double the impact strength and significantly improve its tensile strength and flexural strength for POM/TPU (75/25) blend. SEM images show that Joncryl can reduce TPU particle size and enhance the interfacial interactions between POM and TPU. The interparticle distance of TPU in POM/TPU/Joncryl blends was calculated as 0.2 μm, quite close to the critical matrix ligament thickness of POM/TPU blends (0.18 μm). The impact force profile vividly shows that the addition of Joncyl in POM/TPU blends can dramatically increase the total impact energy absorbed by this blend system and enhance the interfacial interactions between POM and TPU. © 2012 Wiley Periodicals, Inc. J. Appl. Polym. Sci., 2013  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号