首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Abstract

In this paper, the response of adhesively-bonded single lap joints (SLJs) with angle-plied composite adherends subjected to flexural loading was investigated. The experiments were carried out for the adherends, glass reinforced polymer matrix, with three kinds of stacking sequence. A three-dimensional finite element (FE) model was developed using ABAQUS/Explicit. The three dimensional Hashin failure criterion with an appropriate damage evolution law was used to characterize the damage inside a ply. Cohesive zone elements were used to model the damage in the adhesive layer (AF163-2K) and the interply failure, that is, the delamination. The developed numerical model was verified with the performed experiments. The SLJs of [±20]5s and [±45]5s failed due to failure in the adhesive layer and the delamination between the plies, whereas that of [±10]5s failed mainly due to the former failure. The intralaminar damage was not noticed for any case. The influence of the fiber angle of plies in the adherends, adherend thickness, overlap length, and the thickness of adhesive layer on the damage in the adhesive layer and the delamination were investigated in terms of the competition between these two failures and activation of different failure modes in each thoroughly.  相似文献   

2.
The tensile performance of adhesively bonded CFRP scarf-lap joints was investigated experimentally and numerically. In this study, scarf angle and adherend thickness were chosen as design parameters. The lap shear strength is not directly proportional to scarf angle and adherend thickness for the brittle adhesive studied in the paper. The major failure mode includes cohesive shear failure and adherend delamination failure. The results present a stepped failure morphology along the bondline in the adhesive layer. A finite element model based on cohesive zone model was established to further investigate the stress distribution of scarf-lap joints with different lap parameters. The numerical results were compared with the experiment results, showing a good agreement, thus verifying the validity of the established numerical model.  相似文献   

3.
In this work, elasto-plastic stress analysis of single lap joints with and without protrusion in adhesive bondline subjected to tension and bending was carried out using 2D non-linear finite element analysis and confirmed experimentally. AA 2024-T3 aluminum adherends were bonded with SBT 9244 film adhesive. The protrusion was obtained by extending the adhesive film by 2?mm from the overlap length at both overlap ends. Three different adherend thicknesses and overlap lengths for each loading and bondline type were used. The joints with and without protrusion, for comparison, were loaded with the same load for each adherend thickness and overlap length. Finally, it was observed that the protrusion reduces the strength in the joint under tension, while the protrusion increases the strength in the joint under bending.  相似文献   

4.
In this paper, the mechanical behavior of the Single-Lap Joints (SLJs) bonded with two different adhesives (FM 73 and SBT 9244) under a bending moment was analyzed, both experimentally and numerically. Four-point bending experiments for the joints with different overlap lengths were carried out and fracture surfaces of the SLJs were examined with a Scanning Electron Microscope (SEM). After the stress analysis in the SLJs was performed via a finite element method by considering the material non-linearities of the adhesives and adherend (AA2024-T3), the Finite Element Analysis (FEA) results were compared with experimental results. Finally, the stress analyses and experimental results show that the failure in the SLJs subjected to a bending moment probably initiates from the overlap region on the adhesive–upper adherend interface in tension and propagates towards the centre of the overlap. Also, in the joint subjected to a bending moment, it is seen that the load carried by the SLJ with SBT 9244 adhesive with increasing overlap length is more than that of the SLJ with FM 73 adhesive, although in the bulk form FM 73 adhesive is about three times stronger than SBT 9244 adhesive.  相似文献   

5.
This article presents the experimental and numerical results of adhesively bonded hybrid single-lap joint (SLJ) geometry with different configurations of lower and upper adherends subject to a four-point bending test. AA2024-T3 aluminium alloy and carbon/epoxy composites with different lamina numbers and four different stacking angles as adherend and two-part liquid, structural adhesive DP 125 as paste adhesive were used. In the experimental studies, three different types of SLJs were produced using lower material that had a constant thickness of AA2024-T3 aluminium alloy and upper material of composite material that had different numbers of layers and four different stacking sequences ([0], [0/90], [45/?45], [0/45/?45/90]). In the numerical analysis, stress analyses of the SLJs were performed with a three-dimensional non-linear finite element method and the composite adherends were assumed to behave as linearly elastic materials, while the adhesive and aluminium adherend were assumed to be non-linear. Consequently, the change of stacking sequence and thickness of the composite in adhesively bonded SLJs altered the location of the neutral axis in the joint. This situation substantially influences the load-carrying capacity of the joint.  相似文献   

6.
In the present study, mechanical properties of different single lap joint configurations derived from adherends with different thicknesses subjected to tensile loading were investigated experimentally and numerically. For this purpose, experimental studies were conducted on two different types of SLJ samples, the first type with identical upper and lower adherend thicknesses and the second with different upper and lower adherend thicknesses. For the first type, five different thickness values were tested. For the second type, the lower adherend thickness was constant while five different upper adherend thickness values were tested. The adhesive was prepared from a two-part paste. After the experimental studies, stress analyses on the SLJs were performed with three-dimensional finite element analysis by considering the geometrical non-linearity and the material non-linearities of the adhesive (DP460) and adherend (AA2024-T3). It was observed that, in single lap joint geometry, variation in the thickness of the adherend and the use of lower and upper adherends with different thickness values changed the stress concentrations at the edges of the overlap regions, affecting the experimental failure load of the joints.  相似文献   

7.
This paper presents analytical nonlinear solutions for composite single-lap adhesive joints. The ply layups of each composite adherend can be arbitrary, but in the overlap region the ply layups of the upper and lower adherends are assumed to be symmetrical about the adhesive layer. In the present formulation, equilibrium equations of the overlap are derived on the basis of geometrical nonlinear analysis. The governing equations are presented in terms of adherend displacements by taking into account large deflections of the overlap adherends and adhesive shear and peel stresses simultaneously. Closed-form nonlinear solutions for adherend displacements, an edge moment factor and adhesive stresses are formulated and then simplified for practical applications. To verify the present analytical solutions for nonlinear analysis of composite single-lap joints, the geometrically nonlinear 2D finite element analysis is conducted using commercial package MSC/NASTRAN. The numerical results of the edge moment factor, deflections and adhesive stresses predicted by the present solutions correlate well with those of the geometrically nonlinear finite element analysis. This indicates that the present analytical solutions capture key features of geometrical nonlinearity of composite single-lap adhesive joints.  相似文献   

8.
This paper presents an approach to predicting the strength of joints bonded by structural adhesives using a finite element method. The material properties of a commercial structural adhesive and the strength of single-lap joints and scarf joints of aluminum bonded by this adhesive were experimentally measured to provide input for and comparison with the finite element model. Criteria based on maximum strain and stress were used to characterize the cohesive failure within the adhesive and adherend failure observed in this study. In addition to its simplicity, the approach described in this paper is capable of analyzing the entire deformation and failure process of adhesive joints in which different fracture modes may dominate and both adhesive and adherends may undergo inelastic deformation. It was shown that the finite element predictions of the joint strength generally agreed well with the experimental measurements.  相似文献   

9.
Experimental tests and finite element method (FEM) simulation were implemented to investigate T700/TDE86 composite laminate single-lap joints with different adhesive overlap areas and adherend laminate thickness. Three-dimensional finite element models of the joints having various overlap experimental parameters have been established. The damage initiation and progressive evolution of the laminates were predicted based on Hashin criterion and continuum damage mechanics. The delamination of the laminates and the failure of the adhesive were simulated by cohesive zone model. The simulation results agree well with the experimental results, proving the applicability of FEM. Damage contours and stress distribution analysis of the joints show that the failure modes of single-lap joints are related to various adhesive areas and adherend thickness. The minimum strength of the lap with defective adhesive layer was obtained, but the influence of the adhesive with defect zone on lap strength was not decisive. Moreover, the adhesive with spew-fillets can enhance the lap strength of joint. The shear and normal stress concentrations are severe at the ends of single-lap joints, and are the initiation of the failure. Analysis of the stress distribution of SL-2-0.2-P/D/S joints indicates that the maximum normal and shear stresses of the adhesive layer emerge on the overlap ends along the adhesive length. However, for the SL-2-0.2-D joint, the maximum normal stress emerges at the adjacent middle position of the defect zone along the adhesive width; for the SL-2-0.2-S joint, the maximum normal stress and shear stress emerge on both edges along the adhesive width.  相似文献   

10.
The use of adhesive joints is becoming increasingly important in aerospace, automotive and other industries where the use of traditional fasteners is discouraged. When using composite adherends, the use of adhesively bonded joints is preferable rather than the traditional bolts and other types of fasteners, because they do not require holes, thereby removing the problems of stress concentrations around the holes. However, when using an adhesively bonded joint, there will be concentrations of the distributions of shear and peel stresses within the adhesive layer which should be controlled effectively. Therefore, the investigation of such stress variation has attracted many researchers. The aforementioned stress distributions become more complicated if the composite adherend contains a pre-existing delamination. Delamination is one of the most common failure modes in laminated composite materials; it can occur due to sudden impact by an external object, during the manufacturing process (e.g., during the filament winding process), or as a result of excessive stresses due to an applied load. It is clear that the existence of a delamination in any composite structure causes a reduction in its stiffness and in some critical situations, it may cause complete failure. This paper investigates the effect of delamination on the structural response of an adhesively bonded tubular joint with composite and aluminum adherends. The finite element method, using the commercial package ABAQUS, is used to conduct a parametric investigation. The effects of the delamination's spatial location, length, width, and the applied loading are studied. Results provide interesting insight (not necessarily intuitive) into the effect of an interlayer delamination on the stress distribution within the adhesive.  相似文献   

11.
Symmetric and unsymmetric double cantilever beam (DCB) specimens were tested and analyzed to assess the effect of (1) adherend thickness and (2) a predominantly mode I mixed mode loading on cyclic debond growth and static fracture toughness. The specimens were made of unidirectional composite (T300/5208) adherends bonded together with EC3445 structural adhesive. The thickness was 8, 16 or 24 plies. The experimental results indicated that the static fracture toughness increases and the cyclic debond growth rate decreases with increasing adherend thickness. This behavior was related to the length of the plastic zone ahead of the debond tip. For the symmetric DCB specimens, it was further found that displacement control tests resulted in higher debond growth rates than did load control tests. While the symmetric DCB tests always resulted in cohesive failures in the bondline, the unsymmetric DCB tests resulted in the debond growing into the thinner adherend and the damage progressing as delamination in that adherend. This behavior resulted in much lower fracture toughness and damage growth rates than found in the symmetric DCB tests.  相似文献   

12.
The strength and lifetime of adhesively bonded joints can be significantly improved by reducing the stress concentration at the ends of overlap and distributing the stresses uniformly over the entire bondline. The ideal way of achieving this is by employing a modulus graded bondline adhesive. This study presents a theoretical framework for the stress analysis of adhesively bonded tubular lap joint based on a variational principle which minimizes the complementary energy of the bonded system. The joint consists of similar or dissimilar adherends and a functionally modulus graded bondline (FMGB) adhesive. The varying modulus of the adhesive along the bondlength is expressed by suitable functions which are smooth and continuous. The axisymmetric elastic analysis reveals that the peel and shear stress peaks in the FMGB are much smaller and the stress distribution is more uniform along its length than those of mono-modulus bondline (MMB) adhesive joints under the same axial tensile load. A parametric evaluation has been conducted by varying the material and geometric properties of the joint in order to study their effect on stress distribution in the bondline. Furthermore, the results suggest that the peel and shear strengths can be optimized by spatially controlling the modulus of the adhesive.  相似文献   

13.
One parameter that influences adhesively bonded joints performance is the adherend material and its effect should be taken into consideration in the design of adhesive joints. In this work, the effect of material on the mechanical behaviour of adhesive joints was investigated experimentally and numerically by single lap joints (SLJs) with different adherend materials (high strength steel, low strength steel and composite). The adhesives selected were two new modern tough structural adhesives used in the automotive industry. It was found that, for relatively short overlaps in SLJs bonded with structural modern tough adhesives, failure is dominated by adhesive global yielding and the influence of material on joint strength is not significant. For larger overlaps, the failure is not anymore due to global yielding and the effect of material becomes more important. Moreover, it was possible to evaluate which adhesive is more suited for each material.  相似文献   

14.
This paper presents a study of stress states in two-dimensional models of metal-to-metal adhesively bonded joints subjected to 4-point flexural loading using the finite element (FE) method. The FE simulations were carried out on adhesive bonded joints of high support span to specimen thickness ratio undergoing extensive plastic deformations. Two different adhesive types with eight different adhesive layer thicknesses each varying between 50 μm and μm were considered. The lower interfaces in the brittle adhesive were observed to be under a lower stress state because of the constraint exerted by a relatively stiff lower adherend. The ductile adhesive layers were under a lower state of stress as a result of the lower elastic modulus. It is concluded that the degree of plastic deformation in the adhesive is dictated by the adherend stiffness and the load transfer along the interface. The effect of load and support pins is noticeable at all adhesive thicknesses. High stress localisation exists in the vicinity of the load pins. The constraint exerted by the adherends dictates the deformation gradient through thickness of the adhesive layer. Adhesive joint behaviour as determined by the adhesive properties is investigated and also experimentally validated. Conclusions were drawn by correlating the adhesive and adherend stress states.  相似文献   

15.
Single-lap joint (SLJ) geometry is the most widely used type of adhesive joint geometry. In this joint, peel stresses occur at the overlap ends due to load eccentricity and the presence of shear-free adhesive termination surfaces. These peel stresses, along with the transverse tensile stresses which occur along the overlap longitudinal axes, and adhesive shear stresses, ultimately cause joint failure. Obviously, reductions in these stresses should result in higher joint strength and increased load capacity. To this end, we exploited elastic spring-back capability of (steel) metal adherends by initially forming curved segments of varying arc lengths and radii at overlap ends. These adherends with curved-end sections were then bonded in single-lap configuration, simply by applying sufficient bonding pressure to elastically flatten the curved segments to result in typically flat overlap sections subsequent to adhesive cure and the removal of bonding pressure. Since the elastic adherend overlap ends tend to revert back to their initial curved form, they exert compressive residual stresses on the adhesive layer in the overlap end regions. We determined that the compressive residual stresses induced in this fashion considerably increased the load capacity of SLJs subjected to tension.  相似文献   

16.
Adhesively bonded technology is now widely accepted as a valuable tool in mechanical design, allowing the production of connections with a very good strength‐to‐weight ratio. The bonding may be made between metal–metal, metal–composite or composite–composite. In the automotive industry, elastomeric adhesives such as polyurethanes are used in structural applications such as windshield bonding because they present important advantages in terms of damping, impact, fatigue and safety, which are critical factors. For efficient designs of adhesively bonded structures, the knowledge of the relationship between substrates and the adhesive layer is essential. The aim of this work, via an experimental study, is to carry out and quantify the various variables affecting the strength of single-lap joints (SLJs), especially the effect of the surface preparation and adhesive thickness. Aluminium SLJs were fabricated and tested to assess the adhesive performance in a joint. The effect of the bondline thickness on the lap-shear strength of the adhesives was studied. A decrease in surface roughness was found to increase the shear strength of the SLJs. Experimental results showed that rougher surfaces have less wettability which is coherent with shear strength tests. However, increasing the adhesive thickness decreased the shear strength of SLJs. Indeed, a numerical model was developed to search the impact of increasing adhesive thickness on the interface of the adherend.  相似文献   

17.
In this study, the initiation and propagation of damaged zones in the adhesive layer and adherends of adhesively bonded single and double lap joints were investigated considering the geometrical non-linearity and the non-linear material behaviour of the adhesive and adherends. The modified von Mises criteria for adherends and Raghava and Cadell's failure criteria (J. Mater. Sci. 8, 225 (1973) [1]) including the effects of the hydrostatic stress states for the epoxy adhesive were used to determine the damaged adhesive and adherend zones which exceeded the specified ultimate strains. The stiffness of all finite elements corresponding to these zones was reduced so that they could not contribute to the overall stiffness of the adhesive joint. This approach simplifies to observe the initiation and propagation of the damaged zones in both the adhesive layer and adherends. A tensile load caused first the damaged adhesive zones to appear at the right free end of the adhesive-lower adherend interface and at the left free end of the adhesive-upper adherend interface, and then to propagate through the adhesive regions near the adhesive-adherend interfaces (interfacial failure). In the bending test, the damaged zone initiated at the left free end of the adhesive-upper adherend interface in tension, and similarly propagated through the adhesive regions close to the adhesive-adherend interface (interfacial failure). In the double-lap joint subjected to a tensile load, the damaged adhesive zones initiated first at the right free end of the adhesive-middle adherend interface and then propagated through the adhesive region near the adhesive-adherend interface. After the damaged zone reached a specific length it also grew through the adhesive thickness, and the adhesive joint failed. The SEM micrographs of fracture surfaces around the free edges of the overlap region indicated that the failure was interfacial. An additional damaged zone growth was observed in the side adhesive regions due to lateral straining, called the Poisson effect.  相似文献   

18.
In this work, elasto-plastic stress analysis of a Single Lap Joint (SLJ) subjected to bending moment was investigated using 2D non-linear Finite Element Analysis (FEA). The SLJs, consisting of hardened steel as the adherend bonded by two adhesives, one stiff and one flexible, with very different mechanical behaviors were analyzed. In order to determine the effect of geometrical parameters on the performance of the SLJs, four different adherend thicknesses and overlap lengths for each adhesive were used. For verification of the analysis, the FEA results were compared with experimental results. It was observed that there was a significant effect of adherend thickness on the strength of the joint with both adhesives. However, the load carried by the SLJ with the flexible adhesive increased with increasing overlap length.  相似文献   

19.
This study addresses the low-speed impact behavior of adhesively bonded single-lap joints. An explicit dynamic finite element analysis was conducted in order to determine the damage initiation and propagation in the adhesive layers of adhesive single-lap joints under a bending impact load. A cohesive zone model was implemented to predict probable failure initiation and propagation along adhesive–adherend interfaces whereas an elasto-plastic material model was used for the adhesive zone between upper and lower adhesive interfaces as well as the adherends. The effect of the plastic deformation ability of adherend material on the damage mechanism of the adhesive layer was also studied for two aluminum materials Al 2024-T3 and Al 5754-0 having different strength and plastic deformation ability. The effects of impact energy (3 and 11 J) and the overlap length (25 and 40 mm) were also investigated. The predicted contact force-time, contact force-central displacement variations, the damage initiation and propagation mechanism were verified with experimental ones. The SEM and macroscope photographs of the adhesive fracture surfaces were similar to those of the explicit dynamic finite element analysis.  相似文献   

20.
Four-point bend tests were performed on single lap joints with hard steel adherends and a structural epoxy adhesive. The effect of the overlap, the adherend thickness and the adhesive thickness was studied. It was found that the length of the overlap has no significant effect on the strength of the joints. This is because the load transfer is occurring in a very localised area around the edges of the overlap, being the failure governed by peel mechanisms. The thickness of the adherends strongly affects the strength of the joints. The thicker the adherend, the stronger is the joint. The experimental results are compared with a finite element model and reinforce the fact that the failure takes place due to local strains at the ends of the overlap in tension. An analytical model is also given to predict in a simple but effective way the joint strength and its dependence on the adherend thickness.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号