首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 187 毫秒
1.
Glued-in rods are an increasingly used technical solution for numerous structural applications in timber engineering, and demonstrate the potential of adhesively bonded connections. During the insertion process the adhesive fills a very narrow gap over significant anchorage contact area, raising concerns that manufacturing defects may impact the structural performance of the bonded joint, namely the possible lack of adhesion resulting from inadequate preparation of the joint on site. Previous studies on the effect of bonding defects on the capacity of bonded joints identified a nuanced relationship that depends on the ductility of the adhesive.This paper presents experimental evidence that sheds light on the relationship between defects and capacity of glued timber joints. Joints composed of softwood glulam members and mild steel glued-in threaded rods were manufactured with two types of defects likely to be encountered on-site: i) rods placed at an angle inside drill hole instead of aligned with the joint axis, and ii) rod placed against the side of the drill hole instead of fully centered. To establish performance benchmarks a first phase studied the influence of the anchorage length and the rod diameter using three different adhesives. The effect of these defects on joint capacity was investigated with three different adhesives in combination with three different rod anchorage lengths. The investigations demonstrated that joints with sufficient rod anchorage (herein 10 times the rod diameter) do not exhibit a statistically significant loss of capacity, if compared to defect free joints. These results can contribute towards better understanding of the influence that the studied parameters have on the performance on timber joints with glued-in rods, as well as to translate this information to promote the development of further applications.  相似文献   

2.
The second part of this series of two papers presents the modelling and strength prediction of Glued-in Rods (GiR) experimentally investigated in Part I. Unlike what has been documented in previous publications, significant effort was put into extensive modelling of all components (adhesive, wood, and rods), in particular regarding stress components other than shear. Based upon the material modelling, stresses inside the GiR were estimated through Finite-Element Analysis (FEA), which indicated that transverse tensile strength are at least as significant as shear stresses in their magnitude. Both results mitigate previous research findings that focused on shear-dominated failure mechanisms and neglected transverse tensile strength. Combining the material characterisation with FEA, and reformulating strength in probabilistic terms, then allowed to perform predictions of joint capacities for all 60 experimentally investigated GiR-configurations. The comparison between predicted and experimental values showed a good agreement wit relative difference amounting to –3% for beech GLT, –2% for oak GLT, and +1%, respectively. Unlike Fracture Mechanics and Cohesive Zone Modelling, necessary parameters were solely obtained independently from the GiR itself, and no single parameter had to be back-fitted on the experimental results of the GiR. Results clearly showed that transverse tensile strength of the wood is at least as important as shear strength for joint capacity of GiR, and that longitudinal strength plays a minor role.  相似文献   

3.
In a full-scale mill experiment two groups of high density wood fibre boards were produced. While one group was bonded with a standard melamine reinforced urea-formaldehyde adhesive, a second group was bonded with a modified adhesive yielding systematically improved board properties at identical amounts of adhesive applied. By means of a novel fluorescence-microscopic method using the dye Acriflavine to colour the cured adhesive after board production, adhesive distribution within the industrial produced boards was evaluated and quantified. Very clear differences in the size distribution of the two adhesives were found, leading to the conclusion that a relationship exists between adhesive distribution and mechanical board performance.  相似文献   

4.
Biopolyurethane prepared from liquefied wood with the residue of the liquefied wood product was investigated in this article. Previous results indicated that the residue of the liquefaction product was composed mostly of compounds originated from lignin. The chemical structures of lignin in softwood and hardwood are different. The influence of soft‐ and hardwood species on the chemical structure and mechanical properties of biopolyurethane prepared from liquefied wood with residue was investigated by tensile testing and Fourier transform infrared spectroscopy. The experimental results showed that the liquefaction of softwood occurs within a shorter time than that of hardwood and the biopolyurethane prepared from softwood was harder than that prepared from hardwood, which suggests that the properties of the liquefaction product and biopolyurethane are influenced by the chemical structure of the lignin. © 2010 Wiley Periodicals, Inc. J Appl Polym Sci, 2010  相似文献   

5.
The process of manufacturing laminated wood board is an effective technique for reducing or eliminating the negative properties of solid wood materials and for obtaining high‐performance materials. More economical composite laminated materials, which use different types of wood together and have the strength suitable for the purpose, can be produced with this technique. In the present study, composite laminated specimens containing beech (Fagus orientalis Lipsky), a type of hardwood, and poplar (Populus nigra), a softwood, were produced with layers of two thicknesses: 4 and 5 mm. Poly(vinyl acetate) (PVAc) and polyurethane (PU) glues were used in gluing. The results of the tests were compared with those for the solid wood specimens, and it was found that new composite building materials with high mechanical strength and lower cost could be produced for the construction materials sector in Turkey instead of solid wood. © 2006 Wiley Periodicals, Inc. J Appl Polym Sci 102: 3673–3678, 2006  相似文献   

6.
—The mechanical properties of polystyrene filled with chemithermomechanical pulp and wood residues of softwood and hardwood species, which were precoated with phthalic anhydride and various polymers, e.g. polystyrene and PVC, have been investigated. The extent of improvement in the mechanical properties of the composite materials depends on the coating composition, the concentration of phthalic anhydride, the nature of the coated polymers, as well as the concentration of fiber, the nature of the wood species, and the nature of the pulps. Experimental results indicate that phthalic anhydride acts as a coupling agent, but when its performance was compared to that of poly[methylene (polyphenyl isocynate)], it seemed inferior to the latter.  相似文献   

7.
Lignin is a natural and renewable organic compound that can be easily obtained from spent pulping liquors. It can be used as feedstock for making wood adhesives. Nonetheless, lignins need to be modified to enhance reactivity prior to being used as feedstock for making wood adhesives. Appropriate crosslinkers are also needed to ensure the bonding quality of the lignin-based wood adhesives. In the present review, the drawbacks of using lignins alone as wood adhesives, modifications to enhance the reactivity of lignins and production of lignin-based copolymer adhesives for composite wood panels are reviewed and discussed. The objective of this review is to provide background information about the recent status on the development of lignin-based copolymer adhesives for the production of composite wood panels as well as the future prospects of these adhesives in industry. Several modifications such as demethylation, oxidation, methylolation, phenolation, reduction and hydrolysis have shown promising results for enhancing the reactivity of lignins. Several crosslinkers such as phenolic resin, tannin, polymethylene polyphenyl isocyanate (pMDI), furfural and ethylenimine are capable of copolymerizing with lignins to produce lignin-based wood adhesives. The performance of composite wood panels bonded with modified lignin-based copolymer adhesives have been shown to meet the requirements of relevant standards. The main obstacles for the composite wood panels industry to widely adopt to lignin-based copolymer adhesives are the economic and technical issues. Nevertheless, lignin modification methods are proving to enhance the reactivity of lignins and the optimization in such modification methods would justify the economic issue. Together with the public awareness on the safety, health and environment concerns, the utilization of lignin-based adhesives in the composite wood panels industry is feasible.  相似文献   

8.
Heat treatment is a well-known method for modifying wood that is applied in different ways, and treatment schedules change from tree to tree. This treatment improves the physical properties of wood but, in general, it reduces the mechanical properties of wood. The effects of heat treatment on the mechanical properties of juvenile and mature wood of the same tree species have not been well-defined. Therefore, we focused our study on the differences in the mechanical properties of juvenile wood and mature wood of Eucalyptus grandis after both were subjected to heat treatment. Wood samples were treated at temperatures of 120, 150, and 180°C for 4, 6, and 8 h. The test results showed that decreases in the mechanical properties of juvenile wood (e.g., modulus of elasticity (MOE), modulus of rupture (MOR), compression strength (CS), and impact bending (IB)) were greater than the decreases that occurred in mature wood that was heat treated at the same conditions.  相似文献   

9.
Over recent years, the interest in bio-adhesives, including soy-based adhesives, has increased rapidly. Among natural renewable resources suitable for industrial use, soy is a reasonable choice due to its high production volume and the small use of soy meal-based products for human food consumption. Soy flour can be an ideal raw material for the manufacturing of wood adhesives due to its low cost, high protein content and easy processing. There are also more concentrated forms of soy proteins, i.e. concentrates and isolates, which are also suitable raw materials for adhesive production except that their prices are higher. Extensive research has been carried out on improving the cohesive properties, especially water resistance, of soy-based adhesives. However, there is insufficient experimental data available for understanding the influences of modification methods on the structure of soy proteins and therefore for understanding the influences of structural changes on the adhesion. In this paper, some experimental techniques are proposed to be used for analysing soy-based adhesives to enable better understanding of those factors and improve future development. This review of soy-based adhesives is made with the focus on soy proteins’ chemical composition, soy protein product types (raw materials for adhesive production), modification methods for improving the adhesive properties of soy-based adhesives, and commercial soy-based adhesives.  相似文献   

10.
Influence of the chemical structure of PUR prepolymers on thermal stability   总被引:2,自引:0,他引:2  
The thermal stability of adhesives for load-bearing construction has been one of their key parameters since engineered wood products were introduced in timber construction. In the case of one-component moisture-curing polyurethane (1C PUR) adhesives, knowledge about relationships between their chemical structure and the resulting bonding properties is limited, especially under high-temperature conditions. In this study the structure-property relationships of 1C PUR prepolymers were analyzed in the temperature range from 20 to 200 °C by means of mechanical and rheological tests. NCO-terminated urethane prepolymers were prepared from systematically varied MDI and polyether mixtures. The structural parameters investigated were the urea and urethane group content, cross-link density, ethylene oxide content and the adjustment of functionality via NCO or polyether component. Bonded wood joints were tested for their tensile shear strength and polymer films were analyzed by means of DMA and DSC. The results revealed a significant influence of hard segment content and cross-link density on the thermal stability of the prepolymers. Not all parameters that affect the film properties significantly influence bonding.  相似文献   

11.
ABSTRACT

Over the past years, a large number of studies about the implementation of adhesive bonding in timber engineering were published. Current practice is to use two-component (2K) epoxies and polyurethanes in conjunction with threaded steel bars, reinforced concrete bars, and rods made of fibre reinforced polymer. All these material might be considered questionable in terms of sustainable ecology. The current article investigates the possible substitution of aforementioned metallic bars by hardwood dowels, and the polymer-based adhesives by glutine- and casein-based ones. It summarises experimental investigations carried out with different geometric parameters, in which beech (a hardwood) rods were glued into spruce (a softwood) blocks. Joint capacities achieved using glutine- and casein-based adhesives were compared with results using 2K epoxies and 2K polyurethane adhesives under dry conditions, and under the influence of moisture. Results indicate that current glutine and casein adhesives, if used under dry conditions, achieve similar strength; however, the influence of moisture is still a limiting factor that severely restricts their usage under adverse conditions. The presentation of the results is completed by a numerical modelling of the considered joints, including a methodology to predict their capacity with a reasonable degree of accuracy.  相似文献   

12.
在非承载类硬木结构中使用水性热塑性胶粘剂,要求最终胶接接头具有较高的机械性能(高于木材本身)和抗蠕变性.当胶接接头受到静负荷作用时,其机械性能会受到胶粘剂本身性能和木材类型的影响,即与胶粘剂和基材之间密切相关.选取化学成分相同、合成路径不同的两类聚合物,并参照国际标准[12]对胶粘剂的相关性能进行光谱分析、量热分析、形态结构分析和测试.有趣的是,两例胶在剪切试验中表现出显著差异:一类导致被粘基材的内聚破坏,另一类导致被粘基材表面的胶粘剂破坏.由此可知,所测试聚合物所表现出的不同机械性能与粘接机理有关.因此,本文合成了新一代Vinavil水基聚合物胶粘剂,由于采用新颖的前瞻性技术,其特殊性能显而易见,且远超过传统标准.  相似文献   

13.
Aiming at the development of sustainable materials, in this study, a biobased wood polyurethane adhesive (PUA), derived from castor oil (CO), was synthetized and its properties were compared with a conventional wood adhesive. Different NCO/OH ratios have been used to assess its effect on the properties of the ensuing adhesives. FTIR, and DMA were used to monitor the extent of reaction and the glass transition temperature of the adhesive, respectively. In turn, the wood bonding properties of the PUA over time were assessed by lap shear using pine wood specimens. Is was observed that the lap shear strength increases with the increase of the RNCO/OH up to RNCO/OH = 2.50. Above this ratio, the adhesive performance decreases slightly, due to the rigidity of the PUA. Comparison with a conventional wood adhesive showed that CO derived adhesives presented similar strength properties but required less time to develop the ultimate bonding strength. The chemical and thermal stability of the most promising CO adhesive was also assessed. Despite of being sensitive to the chemical environment, the castor oil derived adhesives presented higher thermal stability than conventional wood adhesives.Finally, the cure process of CO derived adhesives was studied by differential scanning calorimetry and the Kissinger and Ozawa methods were used to determine the activation energy (Ea). The former afforded a value for Ea = 80.55 and the latter Ea = 87.07 kJ mol−1. Moreover, it was observed that the activation energy is dependent on the degree of cure, increasing slightly up to 0.6 and decreasing significantly afterwards.  相似文献   

14.
This study reports the preparation of polyurethane adhesives using polyols obtained from cellulosic waste and detailed study on its adhesive strength in wood joints. Keeping in view the environmental hazards related to the huge paper-waste generation across the world, low-viscosity polyols have been prepared using magazine paper waste and vegetable oils with different physicochemical properties and were used to prepare two-component polyurethane adhesives for wood bonding. Polyurethane was analyzed by FTIR spectroscopy and TGA was used for the analysis of thermal properties. The adhesive strength was measured and compared with commercially available adhesives under different environmental conditions. The synthesized adhesive with NCO/OH ratio of 1.2 and curing time of 5 days was found to be superior to the commercial adhesives Fevicol™ and Araldite™ when compared simultaneously for the single-lap shear strength in different environmental conditions.  相似文献   

15.
Investigations on the production and development of nanoparticle-reinforced polymer materials have been attracted attention by researchers. Various nanoparticles have been used to improve the mechanical, chemical, thermal, and physical properties of polymer matrix composites. Boron compounds come to the fore to improve the mechanical and thermal properties of polymers. In this study, mechanical, thermal, and structural properties of structural adhesive have been examined by adding nano hexagonal boron nitride (h-BN) to epoxy matrix at different percentages (0.5, 1, 2, 3, 4, and 5%). For this purpose, nano h-BN particles were functionalized with 3-aminopropyltriethoxysilane (APTES) to disperse the h-BN nanoparticles homogeneously in epoxy matrix and to form a strong bond at the matrix interface. Two-component structural epoxy adhesive was modified by using functionalized h-BN nanoparticles. The structural and thermal properties of the modified adhesives were investigated by scanning electron microscopy and energy dispersion X-ray spectroscopy, Fourier transform infrared spectroscopy, differential scanning calorimetry, and thermogravimetric analysis techniques. Tensile test and dynamic mechanical analysis were performed to determine the mechanical properties of the adhesives. When the results obtained from analysis were examined, it was seen that the nano h-BN particles functionalized with APTES were homogeneously dispersed in the epoxy matrix and formed a strong bond. In addition that, it was concluded from the experimental results that the thermal and mechanical properties of adhesives were improved by adding functionalized nano h-BN particles into epoxy at different ratios.  相似文献   

16.
This study was focused on the improvement of mechanical strength properties of wheat straw‐based paper through modification of wet‐end cationic starch with borax. Borax has been used extensively in many industrial applications for its unique physical and chemical properties. We investigated the strengthening effect of borax‐modified starch (BMS) as wet‐end paper strength additive on the mechanical strength properties especially the tensile strength of wheat straw‐based paper. Hand‐sheets made of typical wheat straw‐based papermaking furnish were investigated. Experimental results showed that BMS substantially increased the strength properties. Tensile index, elongation, tensile energy absorption, and wet tensile index were increased by 17%, 23%, 20%, and 21%, respectively. A short mill trial was also conducted on papermaking machine in which the impact of BMS on wheat straw‐based low grammage paper (<90 gsm) was investigated. The objective of mill trial was to reduce costly virgin softwood pulp content in wheat straw‐based paper recipe. Mill trial results showed similar trends in strength properties as in case of laboratory studies. Virgin softwood pulp was reduced from 30% to 25% in papermaking furnish. Furthermore, no sheet breaks were reported during trial which often happened due to poor strength of paper web. This study strongly suggests that modification of wet‐end cationic starch with borax holds a tremendous potential as wet‐end strength additive. It can provide significantly improved strength properties, reduction in softwood pulp costs, and better papermaking machine performance. © 2012 Wiley Periodicals, Inc. J. Appl. Polym. Sci., 2013  相似文献   

17.
Bonding of hardwood for structural applications is a complex process. Various factors influence the bond performance and the interface area is considered the most crucial part. The chemical composition of the interface, e.g. wood extractives, is expected to influence the bonding of hardwoods. The subject of this study was to determine the influence of seven model substances that represent common wood extractives on different adhesive systems namely one-component polyurethane, two-component polyurethane, melamine urea formaldehyde and phenol resorcinol formaldehyde. The influence of the model substances on the cross-linking behavior of the adhesives was determined by attenuated total reflection Fourier transform infrared spectroscopy (ATR-FTIR) and on the rheological properties in terms of gel point and storage modulus. In addition, model substances characteristic for selected wood extractives were applied to the surface of European beech wood [Fagus sylvatica L.] before bonding and consequently tested in tensile shear mode according to EN 302-1. The ATR-FTIR spectra showed an influence of some substances on the crosslinking for all adhesive systems. Further, the curing process was mostly accelerated for phenol resorcinol formaldehyde, while melamine urea formaldehyde and polyurethane showed a less negative change in rheological behavior. The mechanical strength of beech wood bonds at room climate indicated only minor influence of model substances, but samples tested in wet conditions demonstrated a significant effect on some adhesive systems. It was concluded, that polyurethane adhesives degrade by acid substances and melamine urea formaldehyde by starch and gallic acid. Phenol resorcinol formaldehyde system was influenced negatively by starch and acids.  相似文献   

18.
The mechanical behaviour of structural adhesives and adhesive joints under impact loading is of growing interest as adhesives are used increasingly in the construction of vehicles ranging from the family motor car to large trucks and buses. The present paper describes some initial work on the development of an instrumented impact test to study the impact behaviour of epoxy adhesives and the use of a linear-elastic fracture-mechanics approach to characterising the fracture properties.  相似文献   

19.
The mechanical behaviour of structural adhesives and adhesive joints under impact loading is of growing interest as adhesives are used increasingly in the construction of vehicles ranging from the family motor car to large trucks and buses. The present paper describes some initial work on the development of an instrumented impact test to study the impact behaviour of epoxy adhesives and the use of a linear-elastic fracture-mechanics approach to characterising the fracture properties.  相似文献   

20.
The aim of the presented work was to replace phthalate based plasticizers with environmentally friendly materials to provide similar properties for poly(vinyl acetate) (PVAc) adhesives.Polyesters synthesized from the liquefied wood (PE-LW) and depolymerized polyethylene terephthalate (PE-PET) were used as renewable raw materials and evaluated as plasticizers used in PVAc dispersion adhesives for flooring applications. As a reference plasticizer, 1,2,3-triacetoxypropane was used.PVAc adhesives were evaluated with respect to solids content, viscosity, glass transition temperature (Tg), tensile shear strength and binding strength.TGA analysis showed significant differences between the thermal stability of added polyesters and the commercial plasticizer. Samples prepared with PE-PET exhibit the best thermal stability even with an increase of 25% PE-PET. The addition of coalescing agents or plasticizers leads to a temporary softening of the PVAc polymer and a decrease in the glass transition temperature.The type and content of plasticizer have great influence on wood–wood binding strength, tensile strength and elongation.The requirements for the mechanical properties of adhesives were fulfilled by the compositions containing 8.8% (w/w) of PE-PET and 20% (w/w) of PE-LW.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号