首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 78 毫秒
1.
提出一种基于独立成分分析(ICA)的最小二乘支持向量机(LS-SVM),用于时间序列的多步超前独立预测.用ICA估计预测变量中的独立成分(IC),用不含噪声的IC重新构建时间序列.利用 -最近邻法( -NN)减小训练集的规模,提出一种新的距离函数以降低LS-SVM训练过程的计算复杂度,并用约束条件对预测值进行后处理.使用基于ICA的LS-SVM、普通LS-SVM与反向传播神经网络(BP-ANN),对多个时间序列进行对比预测实验.实验结果表明,基于ICA的LS-SVM的预测性能优于普通LS-SVM和BP-ANN.  相似文献   

2.
根据分块矩阵计算公式和支持向量机核函数矩阵本身特点,在增量式最小二乘支持向量机算法的基础上,通过引入剪枝方法改善最小二乘支持向量机的稀疏性,并将这种方法应用于时间序列预测,试验表明这一方法在预测精度及速度上具有一定的优越性。  相似文献   

3.
支持向量机理论是20世纪90年代由Vapnik提出的一种基于统计学习理论的新的机器学习方法,其具有全局最优解和较好的泛化能力,可将其用于求解时间序列预测间题.但是对于非平稳时间序列的顶测,利用支持向量机算法单独建立一个模型的预测结果不如平稳时间序列那样明显,可以采用经验模式分解法作为时序预测的预处理工具.先将非平稳时间序列进行经验模式分解,再对各个分量分别建模,最后将各分量预测结果进行组合.同时通过仿真实验验证了该方法是有效的.  相似文献   

4.
针对最小二乘支持向量机(LS-SVM)在时间序列预测中的参数不确定问题,在训练阶段,使用结合了全局搜索和局部搜索的免疫文化基因算法来进行参数寻优。实验中通过对Lorenz时间序列和建筑能耗的两组预测实验,对比了免疫文化基因算法、遗传算法和网格搜索算法对LS-SVM参数的优化效果,证明了免疫文化基因算法的优化效果最好,且LS-SVM的预测精度比支持向量机(SVM)和BP网络预测都要高。  相似文献   

5.
支持向量回归中的预测信任度   总被引:4,自引:1,他引:3  
Support vector machine (SVM)has been widely applied to classification and regression problems, but it suf-fers from some important limitations, one of the most significant being that it makes point predictions rather thangenerating probability output. A notion of predicting credibility is proposed in support vector regression machine based on the problem, which can make predicting value have a definite measure, and then relationship between pre-dicting credibility and noise is discussed. Finally, an example of predicting chaotic time series shows the rationality of the definition.  相似文献   

6.
针对支持向量机方法在标记用户数据不充分的情况下无法有效实现托攻击检测的不足,提出一种基于SVM-KNN的半监督托攻击检测方法。根据少量标记用户数据训练一个初始SVM分类器,利用初始SVM对大量未标记用户数据进行分类,挑选出分类边界附近有可能成为支持向量的样本点,利用KNN分类器优化边界向量的标记质量,再将重新标注过的边界向量融入训练集,迭代训练逐步改善SVM的分类边界,最终获得系统决策函数。实验结果表明在标记用户数据较少的情况下,方法能有效提高托攻击的检测精度和效率,具有较强的推广能力。  相似文献   

7.
利用最小二乘支持向量机和文献[10]中的半监督学习算法,我们对鼻咽癌患者5年生存状态进行了预测.实验结果表明:当已标注数据比较少时,两种方法的判别精度都比较低;随着已标注数据的增多,最小二乘支持向量机的推广能力逐渐增加,而半监督学习算法并没有给出更好的结果.这说明:对于鼻咽癌患者5年生存状态预测问题,最小二乘支持向量机比半监督学习方法更具有优势.  相似文献   

8.
最小二乘双支持向量机的在线学习算法   总被引:1,自引:0,他引:1  
针对具有两个非并行分类超平面的最小二乘双支持向量机,提出了一种在线学习算法。通过利用矩阵求逆分解引理,所提在线学习算法能充分利用历史的训练结果,避免了大型矩阵的求逆计算过程,从而降低了计算的复杂性。仿真结果验证了所提学习算法的有效性。  相似文献   

9.
阐述了支持向量机应用于大气污染物时间序列预测的具体方法,建立了大气污染物时间序列的支持向量机预测模型.该方法将支持向量杌应用于大气污染物浓度预测:首先通过选择合适的信息量准则来确定模型阶数:而后通过实验的方法选择参数从而形成支持向量机的训练样本集,在此基础上建立了基于支持向量机的时间序列大气污染预测模型.实例表明,无论是在仿真过程还是在预测过程,支持向量机都具有很高的预测精度.因此.采用支持向量机方法对大气污染物时间序列进行预测分析是可行的.  相似文献   

10.
改进的用于回归估计的支持向量机学习算法   总被引:6,自引:1,他引:6  
该文对用于回归估计的标准支持向量机(SVM)加以改进,提出了一种新的用于回归估计的支持向量机学习算法。实验表明,这种新的学习算法在精度上与标准支持向量机算法完全相同,而在学习速度上明显优于标准学习算法。  相似文献   

11.
A Knowledge-Intensive Genetic Algorithm for Supervised Learning   总被引:7,自引:0,他引:7  
Janikow  Cezary Z. 《Machine Learning》1993,13(2-3):189-228
  相似文献   

12.
*The Scientific Research Program Funded by Education Department of Shaanxi Province under Grant No.12JK0748(陕西省教育厅科技计划项目);the Science and Technology Research Project of Shangluo University under Grant No.13sky024(商洛学院科学与技术研究项目).
  法插入样本;最后在新的训练集上确定最终决策函数。在人工数据集和4组UCI数据集上进行了实验,结果表明了该算法对不均衡数据集进行降维采样的有效性。  相似文献   

13.
SVR模型参数选择方法的研究   总被引:2,自引:0,他引:2  
杨玫  刘瑜  孔波 《计算机时代》2009,(11):53-55
对时间序列预测问题进行了讨论。首先对支持向量机的回归算法进行了较详细的介绍,接着讨论了模型参数对预测结果的影响,并通过太阳黑子数据加以验证,最后提出了人工选择参数的方法。  相似文献   

14.
一种新的基于SVM-KNN的Web文本分类算法   总被引:1,自引:0,他引:1  
在应用基本的支持向量机算法的基础上,提出了一种新的Web文本分类算法。将SVM算法和KNN算法进行结合,提出了基于SVM-KNN的Web文本分类算法,用KNN算法来弥补传统SVM算法的不足,以简单的思想和较小的实现代价对传统SVM算法进行有效的改进,收到了良好的分类效果。  相似文献   

15.
为优化嵌入式软件可靠性预测智慧可控感知机制,构建了基于连续协同机器学习算法的嵌入式软件可靠性预测模型.构建连续协同机器学习算法机制实现嵌入式软件可靠性精准预测,利用深度LSTM构建时间正序下的嵌入式软件核心要素样本精准预测机制,利用DCNN对数据池后置测试集进行隐性知识感知并输出最优预测结果.最后,对模型开展了工程应用...  相似文献   

16.
方勇  刘庆山 《系统仿真技术》2011,7(2):116-119,125
在支持向量机( SVM)预测问题中,为了减小错误参数选取对预测结果的影响,提出了1种基于双重预测模型的非线性时间序列预测算法.该算法在充分考虑支持向量机参数对推广能力影响的基础上,分别利用自回归预测模型(AR)、自回归滑动平均模型( ARMA)、线性回归和决策树模型对SVM参数进行预测,将预测参数运用到SVM预测模型中...  相似文献   

17.
针对支持向量机要求输入向量为已标记样本,而实际应用中已标记样本很难获取的问题,提出将半监督学习和支持向量机结合的煤与瓦斯突出预测方法;介绍了采用SVM预测煤与瓦斯突出的流程及其输入向量的选择;对半监督学习中的协同训练算法进行了改进:在同一属性集上训练2个不同分类器SVM和KNN,将2个分类器标记一致的样本加入训练集,从而充分利用未标记样本不断补充信息,更新训练集标记样本,达到强化训练集的目的。测试结果表明,改进后的算法比单独的支持向量机预测方法准确率更高。  相似文献   

18.
传统的金融时间序列预测方法以精确的输入数据为研究对象,在建立回归模型的基础上做单步或多步预测,预测结果是一个或多个具体的值.由于金融市场的复杂性,传统的预测方法可靠度较低.提出将金融时间序列模糊信息粒化成一个模糊粒子序列,运用支持向量机对模糊粒子的上下界进行回归,然后应用回归所得到的模型分别对上下界进行单步预测,从而将预测的结果限定在一个范围之内.这是一种全新的思路.以上证指数周收盘指数为实验数据,实验结果表明了这种方法的有效性.  相似文献   

19.
支持向量机是一种基于结构风险最小化原理的学习技术,也是一种新的具有很好泛化性能的回归方法。目前,如何设计快速有效的回归估计算法仍然是支持向量机实际应用中的问题之一。文中对标准SVM回归估计算法加以改进,提出一种改进的SVM回归估计算法,并从学习速度和回归估计精度两个方面对提出的改进的SVM回归估计算法与标准SVM回归估计算法进行了比较。实验结果表明,在学习速度与回归估计精度之间取折衷时,文中提出的回归估计算法自由度更大。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号