首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
A d-dimensional quantum state secret sharing scheme without entanglement is proposed. In the proposed scheme, the dealer generates a single quantum state in d-dimensional Hilbert space, and performs the Pauli unitary operation on the quantum state according to the private keys of the participants. In the recovery phase, each participant performs the Pauli operation on the quantum state according to his private key, and the last participant will recover the original quantum state. Compared to the existing quantum secret sharing schemes, the main contribution of the proposed scheme is that the quantum state can be shared without the entanglement, so the sharing of the quantum state is more practical.  相似文献   

2.
A solid-state quantum computer composed entirely of semiconductor silicon is proposed. Qubits are nuclear spins, I = 1/2, of 29Si stable isotopes in the form of atomic chains embedded in a nuclear-spin free matrix of 28Si stable isotopes. Each 29Si nuclear spin in a chain can be accessed selectively with a different resonant frequency (rf) due to a large magnetic field gradient created by a nearby micromagnet, i.e., unitary operations needed for quantum computing can be performed by fine tuning of the rf. Ensemble readout of qubits from 105 copies of the atomic chain is accomplished by magnetic resonance force microscopy.  相似文献   

3.
Modern state of studies in spin dynamics of statically disordered media is presented. Next four fundamental problems are attended mainly: 1) delocalization of nuclear polarization in subsystem of impurity nuclei (it is exemplified in model nuclear spin system 8Li-6 Li in the LiF single crystal) 2) nuclear relaxation via paramagnetic impurities in crystals of arbitrary space dimension d 3) free induction decay and EPR line form function at d ≤ 3; and 4) form function of the hole, burned on the wing of the dipolar EPR line.  相似文献   

4.
We study the mechanism of nuclear spin relaxation in quantum dots due to the electron exchange with 2D gas. We show that the nuclear spin relaxation rate T 1 –1 is dramatically affected by the Coulomb blockade (CB) and can be controlled by gate voltage. In the case of strong spin–orbit (SO) coupling the relaxation rate is maximal in the CB valleys whereas for the weak SO coupling the maximum of 1/T 1 is near the CB peaks. The physical mechanism of nuclear spin relaxation rate at strong SO coupling is identified as Debye–Mandelstam–Leontovich–Pollak–Geballe relaxational mechanism.  相似文献   

5.
Consecutively tailoring few‐layer transition metal dichalcogenides MX2 from 2H to Td phase may realize the long‐sought topological superconductivity in a single material system by incorporating superconductivity and the quantum spin Hall effect together. Here, this study demonstrates that a consecutive structural phase transition from Td to 1T′ to 2H polytype can be realized by increasing the Se concentration in Se‐substituted MoTe2 thin films. More importantly, the Se‐substitution is found to dramatically enhance the superconductivity of the MoTe2 thin film, which is interpreted as the introduction of two‐band superconductivity. The chemical‐constituent‐induced phase transition offers a new strategy to study the s+? superconductivity and the possible topological superconductivity, as well as to develop phase‐sensitive devices based on MX2 materials.  相似文献   

6.
Abstract

Any future quantum information machine will contain unitary operators and entangled particle states. The Hilbert space describing the action of the quantum information machine separates into a bosonic and a fermionic sector. Because the bosonic sector is of higher dimension, it is always possible to encode more information into a multiboson state than into a multifermion state, given the same complexity, that is unitary representation, of the quantum information machine. This is explicitly studied for the case of two particles defined in two modes. There the beam splitter is a generic representation of any U(2) matrix, and it has recently been shown that one can realize any N-dimensional unitary operator by successive application of such two-dimensional operators. The two-boson two-mode Hilbert space is of dimension three, and thus one can encode log23 = 1·57 bits of information into such an entangled state. Finally, some explicit schemes for creating and detecting the three possible, two-photon, two-mode states spanning the bosonic Bell basis are given.  相似文献   

7.
Low Temperature Behavior of a Two-Dimensional Quantum Antiferromagnet   总被引:2,自引:0,他引:2  
We analyze the two-dimensional antiferromagnet with a quantum disordered ground state and a gap to bosonic excitations with finite spin. The zero temperature (T = 0) quantum phase transition is studied, and the finite temperature effects are also considered in the low temperature approximation of the Renormalization Group Method. The violation of the universality expected for d = 2 system has been shown to be logarithmic for T = 0 and T 0. We showed that chemical potential and the ground state energy depends on the interaction parameters at T = 0 and T 0. but this dependence is logarithmic.  相似文献   

8.
Optoelectronic devices made via spin‐coating of soft materials onto an arbitrary substrate enable ready integration, low cost, and physical flexibility. The use of solution‐processed colloidal quantum dots offers the added advantage of quantum‐size‐effect tuning of material bandgap. Tuning across the near‐ and short‐wavelength infrared (SWIR) spectral regions enables applications in fiber‐optic communications, night vision and biomedical imaging, and efficient solar energy collection. Here we review progress in infrared solar cells, light sensors, and optical sources based on solution‐processed materials. The latest solution‐processed photovoltaics now provide 4.2% power conversion efficiencies in the infrared, placing them a factor of three away from enabling a doubling in overall solar power conversion efficiency of visible‐wavelength solution‐processed photovoltaics. The best solution‐processed photodetectors now provide sensitivities of 1013 Jones D* (normalized detectivity), exceeding the sensitivity of the best epitaxially grown SWIR photodetectors. Infrared optical sources, both broadband light‐emitting diodes and, more recently, lasers, have now also been reported at 1.5 µm.  相似文献   

9.
A lack of inversion symmetry coupled with the presence of time‐reversal symmetry endows 2D transition metal dichalcogenides with individually addressable valleys in momentum space at the K and K′ points in the first Brillouin zone. This valley addressability opens up the possibility of using the momentum state of electrons, holes, or excitons as a completely new paradigm in information processing. The opportunities and challenges associated with manipulation of the valley degree of freedom for practical quantum and classical information processing applications were analyzed during the 2017 Workshop on Valleytronic Materials, Architectures, and Devices; this Review presents the major findings of the workshop.  相似文献   

10.
Using ESR, we investigate g-factor and spin coherence time of electrons confined in 2D Si1–xGex {channels} (x < 0.1) by barriers with x > 0.2 and in SiGe quantum dots grown on prepatterned Si substrates. The quantum wells exhibit 2D-anisotropy of both g and which can be explained in terms of the Bychkov–Rashba field. The latter increases with increasing Ge content in the well indicating that the increasing spin-orbit coupling is more important than interface properties. The narrow ESR permits selective spin manipulation already for x > 0.02. Large, regular arrays of Ge quantum dots (about 109) were grown on prepatterned substrates. Strain in the Si capping layer lowers the conduction band relative to that of Ge causing confinement. The g-shift observed implies the possibility of g-tuning by confinement. The line width shows substantial inhomogeneous broadening whereas the longitudinal spin lifetime is hardly changed with respect to 2D structures.  相似文献   

11.
We investigated optical pumping of nuclear spin polarizations in a single self-assembled In0.75Al0.25As/Al0.3Ga0.7As quantum dot. The nuclear spin polarization exhibits the abrupt jump and hysteresis in the excitation power dependence at a particular excitation polarization. Measurement of circular polarization rate of the photoluminescence reveals that the abrupt change of the nuclear spin polarization is created mainly by the spin flip-flop process between nuclei and an electron of a positive charged exciton in this single quantum dot. Model calculation explains well the experimentally observed bistable behavior in InAlAs quantum dot. By using this abrupt change, the sign and magnitude of electron and hole g-factors in z-direction are verified.   相似文献   

12.
Abstract

I (try to) review some of my work in theoretical quantum optics done over some 45 years. Highlights include discovery of ?optical solitons‘ as solutions to the nonlinear Maxwell-Bloch (MB) systems of equations as reported at the 1st National QE Conference, also at Owens Park, Manchester, in 1973. Bose-Einstein condensation (BEC) in magnetic traps at temperatures T ~ 10?9K achieved in 1995 is described by forms of the quantum nonlinear Schrödinger (NLS) equation closely related to the quantized MB equations. It may be possible to see quantum soliton solutions of the quantum attractive NLS equation in one-dimensional (d = 1) magnetic traps holding the Bose condensed metal vapour 7Li. More generally such d = 1 quantum solitons may be significant to modern long-distance optical fibre communication, and perhaps to ?quantum information‘.  相似文献   

13.
Abstract

Candidates for quantum computing which offer only restricted control, e.g. due to lack of access to individual qubits, are not useful for general purpose quantum computing. We present concrete proposals for the use of systems with such limitations as RISQ-reduced instruction set quantum computers and devices-for simulation of quantum dynamics, for multi-particle entanglement and squeezing of collective spin variables. These tasks are useful in their own right, and they also provide experimental probes for the functioning of quantum gates in premature prototypes of quantum computers.  相似文献   

14.
We propose to use optical detection of magnetic resonance (ODMR) to measure the decoherence time T2 of a single-electron spin in a semiconductor quantum dot. The electron is in one of the spin 1/2 states and a circularly polarized laser can only create an optical excitation for one of the electron spin states due to Pauli blocking. An applied electron spin resonance (ESR) field leads to Rabi spin flips and thus to a modulation of the photoluminescence or, alternatively, of the photocurrent. This allows one to measure the ESR linewidth and the coherent Rabi oscillations, from which the electron spin decoherence can be determined. We study different possible schemes for such an ODMR setup, including cw or pulsed laser excitation. An erratum to this article is available at .  相似文献   

15.
We demonstrate spin injection from a n-Zn0.96Mn0.04Se layer into individual InAs quantum dots (SQDs) in a p–i–n diode structure using cw polarization resolved magneto-micro photoluminescence spectroscopy. Interestingly, we find that the spin injection efficiency strongly varies from dot to dot. We obtain a single quantum dot circular polarization degree ranging from 2% to almost 50% (at B=4 T) at zero biasing and within the spectral range studied here, we found 2 maxima of the degree of the circular polarization at SQD energies separated by ∼33 meV. Importantly, we demonstrate that the spin injection efficiency can be manipulated by external forward biasing (U ext).  相似文献   

16.
We consider the efficient numerical solution of the three‐dimensional wave equation with Neumann boundary conditions via time‐domain boundary integral equations. A space‐time Galerkin method with C‐smooth, compactly supported basis functions in time and piecewise polynomial basis functions in space is employed. We discuss the structure of the system matrix and its efficient parallel assembly. Different preconditioning strategies for the solution of the arising systems with block Hessenberg matrices are proposed and investigated numerically. Furthermore, a C++ implementation parallelized by OpenMP and MPI in shared and distributed memory, respectively, is presented. The code is part of the boundary element library BEM4I. Results of numerical experiments including convergence and scalability tests up to a thousand cores on a cluster are provided. The presented implementation shows good parallel scalability of the system matrix assembly. Moreover, the proposed algebraic preconditioner in combination with the FGMRES solver leads to a significant reduction of the computational time. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

17.
In this paper, a series of advanced searching algorithms have been examined and implemented for accelerating multi‐axial fatigue cycle counting efforts when dealing with large time histories. In a computerized calculation of the path‐length dependent cycle counting method, most of the central processor unit's (CPU) time is spent on searching for the maximum range or distance in a stress or strain space. A brute‐force search is the simplest to implement, and will always find a solution if it exists. However, its cost, in many practical problems, tends to grow exponentially as the size of the loading spectrum increases with a search time measured in the order of O(n2), where n is the number of spectrum data points. In contrast, a form of Andrew's monotone chain algorithm, as demonstrated in this paper, can remarkably reduce the solution time to the order of O(n log n). The effectiveness of the new path‐length searching procedure is demonstrated by a series of worked examples with a varying degree of non‐proportionality in multi‐axial loading history.  相似文献   

18.
The nuclear spin relaxation rateT 1 –1 is calculated for a disordered two dimensional highcritical temperature superconductor taking into consideration the inelastic scattering of the electrons on the impurities. The deviation from the Korringa law of the formT 1 –1 =AT+ B has been obtained if the quantum correction to the transport is dominated by the magnetic correlations.  相似文献   

19.
We study a Hamiltonian of S = 1/2 spins with two-, three and four-spin exchange interactions on the triangular lattice as a possible model of the nuclear magnetism of solid 3 He layers. The spin wave theory shows that the tetrahedral ground state, which was shown to be favoured by the four-spin exchange interaction in our previous paper, is stable against quantum fluctuations in some parameter region. Since this state has a scalar chiral long-range order, a phase transition occurs at a finite temperature even though the Hamiltonian has a full rotational symmetry in the spin space. Critical behavior of this phase transition was examined by classical Monte Carlo simulations. The specific heat diverges much more strongly than that of the 2D Ising model.  相似文献   

20.
All‐inorganic lead halide perovskite quantum dots (IHP QDs) have great potentials in photodetectors. However, the photoresponsivity is limited by the low charge transport efficiency of the IHP QD layers. High‐performance phototransistors based on IHP QDs hybridized with organic semiconductors (OSCs) are developed. The smooth surface of IHP QD layers ensures ordered packing of the OSC molecules above them. The OSCs significantly improve the transportation of the photoexcited charges, and the gate effect of the transistor structure significantly enhances the photoresponsivity while simultaneously maintaining high I photo/I dark ratio. The devices exhibit outstanding optoelectronic properties in terms of photoresponsivity (1.7 × 104 A W?1), detectivity (2.0 × 1014 Jones), external quantum efficiency (67000%), I photo/I dark ratio (8.1 × 104), and stability (100 d in air). The overall performances of our devices are superior to state‐of‐the‐art IHP photodetectors. The strategy utilized here is general and can be easily applied to many other perovskite photodetectors.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号