首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 171 毫秒
1.
Bismuth telluride (Bi2Te3) is one of the most important commercial thermoelectric materials. In recent years, the discovery of topologically protected surface states in Bi chalcogenides has paved the way for their application in nanoelectronics. Determination of the fracture toughness plays a crucial role for the potential application of topological insulators in flexible electronics and nanoelectromechanical devices. Using depth-sensing nanoindentation tests, we investigated for the first time the fracture toughness of bulk single crystals of Bi2Te3 topological insulators, grown using the Bridgman-Stockbarger method. Our results highlight one of the possible pitfalls of the technology based on topological insulators.
  相似文献   

2.
Identification of atomic disorders and their subsequent control has proven to be a key issue in predicting, understanding, and enhancing the properties of newly emerging topological insulator materials. Here, we demonstrate direct evidence of the cation antisites in single-crystal SnBi2Te4 nanoplates grown by chemical vapor deposition, through a combination of sub-ångström-resolution imaging, quantitative image simulations, and density functional theory calculations. The results of these combined techniques revealed a recognizable amount of cation antisites between Bi and Sn, and energetic calculations revealed that such cation antisites have a low formation energy. The impact of the cation antisites was also investigated by electronic structure calculations together with transport measurement. The topological surface properties of the nanoplates were further probed by angle-dependent magnetotransport, and from the results, we observed a two-dimensional weak antilocalization effect associated with surface carriers. Our approach provides a pathway to identify the antisite defects in ternary chalcogenides and the application potential of SnBi2Te4 nanostructures in next-generation electronic and spintronic devices.
  相似文献   

3.
We report the investigation of the thermoelectric properties of large-scale solution-synthesized Bi2Te3 nanocomposites prepared from nanowires hotpressed into bulk pellets. A third element, Se, is introduced to tune the carrier concentration of the nanocomposites. Due to the Se doping, the thermoelectric figure of merit (ZT) of the nanocomposites is significantly enhanced due to the increased power factor and reduced thermal conductivity. We also find that thermal transport in our hot-pressed pellets is anisotropic, which results in different thermal conductivities along the in-plane and cross-plane directions. Theoretical calculations for both electronic and thermal transport are carried out to establish fundamental understanding of the material system and provide directions for further ZT optimization with adjustments to carrier concentration and mobility.
  相似文献   

4.
We systematically investigated the development of film morphology and crystallinity of methyl-ammonium bismuth (III) iodide (MA3Bi2I9) through onestep spin-coating on TiO2-deposited indium tin oxide (ITO)/glass. The precursor solution concentration and substrate structure have been demonstrated to be critically important in the active-layer evolution of the MA3Bi2I9-based solar cell. This work successfully improved the cell efficiency to 0.42% (average: 0.38%) with the mesoscopic architecture of ITO/compact-TiO2/mesoscopic-TiO2 (meso-TiO2)/MA3Bi2I9/2,2′,7,7′-tetrakis(N,N-di-4-methoxyphenylamino)-9,9′spiro-bifluorene (spiro-MeOTAD)/MoO3/Ag under a precursor concentration of 0.45 M, which provided the probability of further improving the efficiency of the Bi3+-based lead-free organic–inorganic hybrid solar cells.
  相似文献   

5.
The rational design of earth-abundant catalysts with excellent water splitting activities is important to obtain clean fuels for sustainable energy devices. In this study, mixed transition metal oxide nanoparticles encapsulated in nitrogendoped carbon (denoted as AB2O4@NC) were developed using a one-pot protocol, wherein a metal–organic complex was adopted as the precursor. As a proof of concept, MnCo2O4@NC was used as an electrocatalyst for water oxidation, and demonstrated an outstanding electrocatalytic activity with low overpotential to achieve a current density of 10 mA·cm?1 (η 10 = 287 mV), small Tafel slope (55 mV·dec?1), and high stability (96% retention after 20 h). The excellent electrochemical performance benefited from the synergistic effects of the MnCo2O4 nanoparticles and nitrogen-doped carbon, as well as the assembled mesoporous nanowire structure. Finally, a highly stable all-solid-state supercapacitor based on MnCo2O4@NC was demonstrated (1.5% decay after 10,000 cycles).
  相似文献   

6.
Manipulating the alignment of liquid crystals (LCs) is a hot and fundamental issue for their applications in block copolymers, photonics, actuators, biosensors, and liquid-crystal displays. Here, the surface characteristic of Cu2O nanocrystals was well controlled to manipulate the orientation of the LCs. The mechanism of the orientation of the LCs induced by Cu2O nanocrystals was elucidated based on the interaction between the LCs and Cu2O nanocrystals. To comprehensively prove our assumption, different types of LCs (nematic, cholesteric, and smectic) as well as the same type of LCs with different polarities were selected in our system. Moreover, the photomechanical behaviors of the LC polymer composites demonstrated that the alignment of LCs can be effectively manipulated using Cu2O nanocrystals.
  相似文献   

7.
Two-dimensional ZrS2 materials have potential for applications in nanoelectronics because of their theoretically predicted high mobility and sheet current density. Herein, we report the thickness and temperature dependent transport properties of ZrS2 multilayers that were directly deposited on hexagonal boron nitride (h-BN) by chemical vapor deposition. Hysteresis-free gate sweeping, metalinsulator transition, and T γ (γ ~ 0.82–1.26) temperature dependent mobility were observed in the ZrS2 films.
  相似文献   

8.
In-plane symmetry is an important contributor to the physical properties of two-dimensional layered materials, as well as atomically thin heterojunctions. Here, we demonstrate anisotropic/isotropic van der Waals (vdW) heterostructures of ReS2 and MoS2 monolayers, where interlayer coupling interactions and charge separation were observed by in situ Raman-photoluminescence spectroscopy, electrical, and photoelectrical measurements. We believe that these results could be helpful for understanding the fundamental physics of atomically thin vdW heterostructures and creating novel electronic and optoelectronic devices.
  相似文献   

9.
Multi-shelled CoFe2O4 hollow microspheres with a tunable number of layers (1–4) were successfully synthesized via a facile one-step method using cyclodextrin as a template, followed by calcination. The structural features, including the shell number and shell porosity, were controlled by adjusting the synthesis parameters to produce hollow spheres with excellent capacity and durability. This is a straightforward and general strategy for fabricating metal oxide or bimetallic metal oxide hollow microspheres with a tunable number of shells.
  相似文献   

10.
Nanomaterials with electrochemical activity are always suffering from aggregations, particularly during the high-temperature synthesis processes, which will lead to decreased energy-storage performance. Here, hierarchically structured lithium titanate/nitrogen-doped porous graphene fiber nanocomposites were synthesized by using confined growth of Li4Ti5O12 (LTO) nanoparticles in nitrogen-doped mesoporous graphene fibers (NPGF). NPGFs with uniform pore structure are used as templates for hosting LTO precursors, followed by high-temperature treatment at 800 °C under argon (Ar). LTO nanoparticles with size of several nanometers are successfully synthesized in the mesopores of NPGFs, forming nanostructured LTO/NPGF composite fibers. As an anode material for lithium-ion batteries, such nanocomposite architecture offers effective electron and ion transport, and robust structure. Such nanocomposites in the electrodes delivered a high reversible capacity (164 mAh·g–1 at 0.3 C), excellent rate capability (102 mAh·g–1 at 10 C), and long cycling stability.
  相似文献   

11.
In this paper, we describe the facile and effective preparation of a series of cobalt-doped Fe3O4 nanocatalysts via chemical coprecipitation in an aqueous solution. The catalyst allowed the hydrogenation of chloronitrobenzenes to chloroanilines (CAs) to proceed at low temperatures in absolute water and at atmospheric pressure, resulting in approximately 100% yield and selectivity. Several factors that influence the yield of CAs were investigated. The results showed that the suitable dosage of the catalyst was ~10 mol.% of the substrate, and the optimal reaction time, reaction temperature, and reaction pressure were 20 min, 80 °C, and atmospheric pressure, respectively. Under the optimal reaction conditions, the CA yield was as high as 98.4%, and the nitro reduction rate reached 100%, which indicates the excellent selectivity of the homemade catalyst. This process also overcomes the environmental pollution harms associated with the traditional process.
  相似文献   

12.
The size and density of Ag nanoparticles on n-layer MoS2 exhibit thicknessdependent behavior. The size and density of these particles increased and decreased, respectively, with increasing layer number (n) of n-layer MoS2. Furthermore, the surface-enhanced Raman scattering (SERS) of Ag on this substrate was observed. The enhancement factor of this scattering varied with the thickness of MoS2. The mechanisms governing the aforementioned thickness dependences are proposed and discussed.
  相似文献   

13.
Systemic thrombolysis with intravenous tissue plasminogen activator (tPA) remains the only proven treatment that is effective in improving the clinical outcome of patients with acute ischemic stroke. However, thrombolytic therapy has some major limitations such as hemorrhage, neurotoxicity, and the short time window for the treatment. In this study, we designed iron oxide (Fe3O4) nanorods loaded with 6% tPA, which could be released within ~30 min. The Fe3O4 nanorods could be targeted to blood clots under magnetic guidance. In addition, the release of tPA could be significantly increased using an external rotating magnetic field, which subsequently resulted in a great improvement in the thrombolytic efficiency. Systematic and quantitative studies revealed the fundamental physical processes involved in the enhanced thrombolysis, while the in vitro thrombolysis assay showed that the proposed strategy could improve thrombolysis and recanalization rates and reduce the risk of tPA-mediated hemorrhage in vivo. Such a strategy will be very useful for the treatment of ischemic stroke and other deadly thrombotic diseases such as myocardial infarction and pulmonary embolism in clinical settings.
  相似文献   

14.
Yolk/shell nanoparticles (NPs), which integrate functional cores (likes Fe3O4) and an inert SiO2 shell, are very important for applications in fields such as biomedicine and catalysis. An acidic medium is an excellent etchant to achieve hollow SiO2 but harmful to most functional cores. Reported here is a method for preparing sub-100 nm yolk/shell Fe3O4@SiO2 NPs by a mild acidic etching strategy. Our results demonstrate that establishment of a dissolution–diffusion equilibrium of silica is essential for achieving yolk/shell Fe3O4@SiO2 NPs. A uniform increase in the silica compactness from the inside to the outside and an appropriate pH value of the etchant are the main factors controlling the thickness and cavity of the SiO2 shell. Under our “standard etching code”, the acid-sensitive Fe3O4 core can be perfectly preserved and the SiO2 shell can be selectively etched away. The mechanism of regulation of SiO2 etching and acidic etching was investigated.
  相似文献   

15.
Artificial photosynthesis uses a catalyst to convert CO2 into valuable hydrocarbon products by cleaving the C=O bond. However, this technology is strongly limited by two issues, namely insufficient catalytic efficiency and complicated catalyst-fabrication processes. Herein, we report the development of a novel spray-drying photocatalyst-engineering process that addresses these two issues. Through one-step spray drying, with a residence time of 1.5 s, nanocomposites composed of tin oxide (SnO2) nanoparticles and edge-oxidized graphene oxide (eo-GO) sheets were fabricated without post-treatment. These nanocomposites exhibited 28-fold and five-fold enhancements in photocatalytic efficiency during CO2 reduction compared to SnO2 and commercialized TiO2 (P25), respectively, after irradiation with simulated sunlight for 4 h. This scalable approach, based on short residence times and facile equipment setup, promotes the practical application of artificial photosynthesis through the potential mass production of efficient photocatalysts.
  相似文献   

16.
Iron oxides have attracted considerable interest as abundant materials for high-capacity Li-ion battery anodes. However, their fast capacity fading owing to poorly controlled reversibility of the conversion reactions greatly hinders their application. Here, a sandwich-structured nanocomposite of N-doped graphene and nearly monodisperse Fe3O4 nanoparticles were developed as high-performance Li-ion battery anode. N-doped graphene serves as a conducting framework for the self-assembled structure and controls Fe3O4 nucleation through the interaction of N dopants, surfactant molecules, and iron precursors. Fe3O4 nanoparticles were well dispersed with a uniform diameter of ~15 nm. The unique sandwich structure enables good electron conductivity and Li-ion accessibility and accommodates a large volume change. Hence, it delivers good cycling reversibility and rate performance with a capacity of ~1,227 mA·h·g–1 and 96.8% capacity retention over 1,000 cycles at a current density of 3 A·g–1. Our work provides an ideal structure design for conversion anodes or other electrode materials requiring a large volume change.
  相似文献   

17.
Lithium iron silicate (Li2FeSiO4) is capable of affording a much higher capacity than conventional cathodes, and thus, it shows great promise for high-energy battery applications. However, its capacity has often been adversely affected by poor reaction activity due to the extremely low electronic and ionic conductivity of silicates. Here, we for the first time report on a rational engineering strategy towards a highly active Li2FeSiO4 by designing a carbon nanotube (CNT) directed three-dimensional (3D) porous Li2FeSiO4 composite. As the CNT framework enables rapid electron transport, and the rich pores allow efficient electrolyte penetration, this unique 3D Li2FeSiO4-CNT composite exhibits a high capacity of 214 mAh·g?1 and retains 96% of this value over 40 cycles, thus, outstripping many previously reported Li2FeSiO4-based materials. Kinetic analysis reveals a high Li+ diffusivity due to coupling of the migration of electrons and ions. This research highlights the potential for engineering 3D porous structure to construct highly efficient electrodes for battery applications.
  相似文献   

18.
Sandwich structured graphene-wrapped FeS-graphene nanoribbons (G@FeS-GNRs) were developed. In this composite, FeS nanoparticles were sandwiched between graphene and graphene nanoribbons. When used as anodes in lithium ion batteries (LIBs), the G@FeS-GNR composite demonstrated an outstanding electrochemical performance. This composite showed high reversible capacity, good rate performance, and enhanced cycling stability owing to the synergy between the electrically conductive graphene, graphene nanoribbons, and FeS. The design concept developed here opens up a new avenue for constructing anodes with improved electrochemical stability for LIBs.
  相似文献   

19.
A facile approach for the heterogenization of transition metal catalysts using non-covalent interactions in hollow click-based porous organic polymers (H-CPPs) is presented. A catalytically active cationic species, [Ru(bpy)3]2+ (bpy = 2,2’-bipyridyl), was immobilized in H-CPPs via electrostatic interactions. The intrinsic properties of [Ru(bpy)3]2+ were well retained. The resulting Rucontaining hollow polymers exhibited excellent catalytic activity, enhanced stability, and good recyclability when used for the oxidative hydroxylation of 4-methoxyphenylboronic acid to 4-methoxyphenol under visible-light irradiation. The attractive catalytic performance mainly resulted from efficient mass transfer and the maintenance of the chemical properties of the cationic Ru complex in the H-CPPs.
  相似文献   

20.
Deviation between thermodynamic and experimental voltages is one of the key issues in Li-ion conversion-type electrode materials; the factor that affects this phenomenon has not been understood well in spite of its importance. In this work, we combine first principles calculations and electrochemical experiments with characterization tools to probe the conversion reaction voltage of transition metal difluorides MF2 (M = Fe, Ni, and Cu). We find that the conversion reaction voltage is heavily dependent on the size of the metal nanoparticles generated. The surface energy of metal nanoparticles appears to penalize the reaction energy, which results in a lower voltage compared to the thermodynamic voltage of a bulk-phase reaction. Furthermore, we develop a reversible CuF2 electrode coated with NiO. Electron energy loss spectroscopy (EELS) elemental maps demonstrate that the lithiation process mostly occurs in the area of high NiO content. This suggests that NiO can be considered a suitable artificial solid electrolyte interphase that prevents direct contact between Cu nanoparticles and the electrolyte. Thus, it alleviates Cu dissolution into the electrolyte and improves the reversibility of CuF2.
  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号