首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到10条相似文献,搜索用时 390 毫秒
1.
在不同条件下对碱式碳酸锌进行焙烧活化,得到活化碱式碳酸锌(AZCH)催化剂,将其用于尿素与1,2-丙二醇(PG)合成碳酸丙烯酯(PC)的反应;考察了活化条件对催化剂活性的影响,并对合成PC的反应条件进行了优化。实验结果表明,在焙烧温度220℃、焙烧时间2 h条件下活化的AZCH催化剂活性最高;优化的反应条件为:反应温度170℃、反应时间2 h、n(PG)∶n(尿素)=2.50、催化剂用量为原料质量的1.00%、真空度0.04 MPa,在此条件下,PC收率达到94.5%。XRD表征结果显示,AZCH催化剂中存在ZnO和Zn4CO3(OH)6.H2O两种晶相,其中ZnO为主活性组分,两种晶相的协同作用促进了催化剂活性的提高。  相似文献   

2.
有机碱催化CO_2和1,2-丙二醇合成碳酸丙烯酯   总被引:2,自引:0,他引:2  
以有机碱为催化剂、乙睛为溶剂,研究了CO2和1,2-丙二醇(PG)合成碳酸丙烯酯(PC)的反应。在所选用的有机碱中,1,5,7-三氮杂双环[4,4,0]葵-5-烯(TBD)的催化活性最高。乙腈不仅作为溶剂还起到脱水剂的作用,通过乙腈水解,可除掉反应中生成的一部分水,打破热力学平衡,极大地提高了PG转化率和PC收率。以TBD为催化剂,优化了反应条件。最佳反应条件为:反应温度175℃,反应压力10M Pa,反应时间15h,n(TBD)∶n(PG)=0.025,n(CH3CN)∶n(PG)=2。在此条件下,PG转化率和PC收率分别为37.3%和22.5%。  相似文献   

3.
碳酸钾催化剂上二氧化碳与1,2-丙二醇合成碳酸丙烯酯   总被引:8,自引:3,他引:5  
陈鸿  赵新强  王延吉 《石油化工》2005,34(11):1037-1040
研究了CO2与1,2-丙二醇(PG)合成碳酸丙烯酯(PC)的反应,优化了反应条件。最佳反应条件为:以碳酸钾为催化剂、反应温度423.15K、反应时间12h、CO2初始压力2.0M Pa、催化剂用量(质量分数)2.0%、n(乙腈)∶n(PG)∶n(CO2)=19.2∶3∶4。在此条件下,PC的最高收率为12.6%,PG转化率为23.8%,PC选择性为53.0%。采用色谱-质谱联用技术对反应产物进行了定性分析,推测主要副反应为溶剂乙腈水解生成乙酰胺,乙酰胺与PG反应生成1,2-丙二醇的乙酸酯。同时经实验发现,提高PC选择性的关键是要有适宜的溶剂。该合成方法为CO2的有效利用提供了一条新途径。  相似文献   

4.
《石油化工》2015,44(10):1182
通过研究反应温度、反应时间和催化剂用量对尿素与1,2-丙二醇(PG)合成碳酸丙烯酯(PC)的影响,考察6种镧化合物的催化活性;用FTIR方法对反应路径进行研究;用XRD、TGA和元素分析等方法对反应后所得黄色沉淀物进行表征,推断合成PC的反应机理。实验结果表明,尿素与PG合成PC的反应为两步反应:第一步为尿素经异氰酸与PG生成中间产物2-羟丙基氨基甲酸酯(HPC),第二步为HPC转化成PC(动力学控制步骤);La Cl3催化剂的活性最高,在160℃、3 h、La Cl3用量2.3%(w,基于体系的质量)的反应条件下,尿素转化率和PC收率可分别达到96.9%和94.3%。表征结果显示,在反应过程中La Cl3能溶于反应体系,La3+可与NH3分子发生络合形成活性中间化合物La(NH3)3Cl3,有利于HPC转化为PC。  相似文献   

5.
ZnO-PbO催化剂上酯交换法合成碳酸二甲酯   总被引:12,自引:5,他引:7  
陈英  赵新强  王延吉 《石油化工》2005,34(2):105-110
采用共沉淀法制备了ZnO-PbO催化剂,并对该催化剂在碳酸丙烯酯(PC)与甲醇酯交换合成碳酸二甲酯(DMC)反应中的催化性能进行了研究。探讨了催化剂制备条件对ZnO-PbO催化剂性能的影响,得出最佳制备条件为:Pb(CH3COO)2.3H2O和Zn(NO3)2.6H2O为前体、m(Zn)∶m(Pb)=3.46、以n(NaOH)∶n(Na2CO3)=3∶1的混合溶液为沉淀剂、焙烧温度500℃。优化了ZnO-PbO催化剂上PC与甲醇酯交换合成DMC反应的条件,即反应温度110℃、反应时间2h、n(CH3OH)∶n(PC)=8.4、催化剂占体系的质量分数为3.0%。在此条件下,PC转化率为63.8%,DMC选择性为97.8%,产率为62.4%。此外还考察了催化剂重复使用的效果,并对其失活原因进行了分析。  相似文献   

6.
《石油化工》2016,45(3):297
以硝酸盐为原料,尿素为沉淀剂,采用均匀沉淀及焙烧的方法制备了Ce-Ca-Mg-Al-O固体碱催化剂,采用单因素实验考察了制备条件对催化剂活性的影响。应用Hammett指示剂滴定法,采用TG,BET,XRD,SEM等方法对催化剂及其前体进行了表征。实验结果表明,制备催化剂的优化条件为:n(Ce)∶n(Ca)∶n(Mg)∶n(Al)=0.100∶3.0∶3.0∶2、反应温度115℃、焙烧温度700℃及焙烧时间6 h;将优化条件下制备的催化剂用于蓖麻油与甲醇的酯交换反应,在n(醇)∶n(油)=9∶1、m(催化剂)∶m(油)=0.04∶1、搅拌转速为550 r/min、反应温度65℃及反应时间为4 h的条件下,蓖麻油转化率可达96.00%。表征结果显示,催化剂的碱强度为7.2~11.2;BJH脱附比表面积为52.20 m~2/g、BJH脱附孔体积为0.102 cm~3/g。  相似文献   

7.
以尿素燃烧法制备了Co-Mo/Al2O3-TiO2催化剂,采用低温N2吸附、HRTEM、XPS等方法对催化剂的表面结构和电子状态进行了表征,在微型固定床反应器上对Co-Mo/Al2O3-TiO2催化剂的活性进行了评价。考察了尿素添加量、TiO2添加量、n(Co)∶n(Mo)、反应温度和液态空速(LHSV)等对催化剂结构和加氢脱硫活性的影响。实验结果表明,采用n(尿素)∶n(Co+Mo)=10.0时制备的Co-Mo/Al2O3-TiO2催化剂表面负载的金属组分密度大,孔径大,对二苯并噻吩的脱除率达94%以上;添加TiO2降低了Mo与载体的相互作用;在Al2O3-TiO2载体中TiO2的质量分数为20%,n(Co)∶n(Mo)=0.35~0.55、反应温度300~380℃、LHSV=3~6h-1的条件下,Co-Mo/Al2O3-TiO2催化剂的加氢脱硫活性最好。  相似文献   

8.
以锂、钙、锌、铝的硝酸盐为原料,尿素为沉淀剂,采用沉淀焙烧法制备了Li-Ca-Zn-Al-O复合氧化物催化剂,采用单因素试验考察了制备条件对催化剂活性的影响。制备复合氧化物催化剂的优化条件为:元素配比n(Li)∶n(Ca)∶n(Zn)∶n(Al)=1∶4∶2∶2,反应温度120℃,焙烧温度800℃,焙烧时间7.0h。将优化条件下制备的Li-Ca-Zn-Al-O复合氧化物用于催化蓖麻油和甲醇的醇解反应,在n(甲醇)∶n(蓖麻油)=9∶1、m(催化剂)∶m(蓖麻油)=0.04∶1、搅拌速率550r/min、反应温度65℃、反应时间3h的条件下,蓖麻油转化率可达91.9%。采用Hammett指示剂法、TG、BET及XRD对复合氧化物及其前躯体进行了表征。结果显示:Li-Ca-Zn-Al-O复合氧化物的碱强度为7.2~11.2;Li-Ca-Zn-Al类水滑石在温度升至800℃时质量趋于稳定;Li-Ca-Zn-Al-O复合氧化物催化剂比表面积为25.70m~2/g、孔体积为0.047 74cm~3/g,且主要由CaO及ZnO两种晶体构成。  相似文献   

9.
《精细石油化工》2017,(1):11-16
以锂、钙、镁、铝的硝酸盐为原料,以尿素为沉淀剂,采用沉淀焙烧的方法制备了Li-Ca-Mg-Al-O固体碱催化剂。采用单因素实验考察了制备条件对催化剂活性的影响,得到制备优化条件为:元素配比n(Li)∶n(Ca)∶n(Mg)∶n(Al)=1∶2∶1∶1,焙烧温度800℃,焙烧时间6.5h。将优化条件下制备的Li-Ca-Mg-AlO固体碱用于催化蓖麻油和甲醇的酯交换反应,在n(醇)∶n(油)=9,m(催化剂)∶m(油)=0.04,搅拌速率为550r/min,反应温度为65℃,反应时间为3h的条件下,蓖麻油转化率可达85.7%。采用Hammett指示剂滴定法、TG、BET、XRD及SEM对催化剂及其前驱体进行了表征。结果表明:Li-Ca-Mg-Al-O固体碱的碱强度为7.2~11.2;Li-Ca-Mg-Al类水滑石在温度超过800℃后质量不再随温度升高而变化;Li-Ca-Mg-Al-O固体碱催化剂比表面积为11.93m~2/g、孔容为0.031 7cm~3/g,主要由CaO、MgO及Al_2O_3三种晶体组成。  相似文献   

10.
王桂荣  李欣  赵新强  王延吉 《石油化工》2012,41(9):1017-1022
以尿素为羰基化试剂,2,4-二氨基甲苯(TDA)和正丁醇为原料,在不同催化剂作用下合成了甲苯二异氰酸酯的前体甲苯-2,4-二氨基甲酸丁酯(BTDC),考察了催化剂种类和反应条件对BTDC合成反应的影响。实验结果表明,γ-Al2O3催化剂对该反应具有较高的活性,适宜的催化剂焙烧温度为500℃。采用上述催化剂,适宜的反应条件为:反应温度200℃,反应时间6 h,催化剂用量(基于TDA的质量)为30%,n(TDA)∶n(尿素)∶n(正丁醇)=1∶5∶65。在此条件下,TDA的转化率为95.3%,BTDC的收率为70.5%。通过液相色谱-质谱联用技术推测了反应路径。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号