首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到10条相似文献,搜索用时 453 毫秒
1.
用高炉渣吸附废水中的Cu~(2+),探讨了反应时间、吸附剂投加量、吸附温度和废水pH等因素对废水中Cu~(2+)去除率的影响,并从动力学和等温吸附模型探讨了吸附作用机理。结果表明,当吸附温度为室温(25℃)、吸附剂投加量为1.2 g、反应时间为60 min、废水初始pH为7时,Cu~(2+)去除率达95.18%;高炉渣吸附剂对废水中Cu~(2+)的吸附过程符合吸附伪二级动力学方程和Langmuir吸附等温模型,这表明此吸附过程主要是单分子层吸附,并且吸附是容易发生的。  相似文献   

2.
《应用化工》2022,(5):1211-1217
采用城市污水处理厂脱水污泥和玉米芯复合碳化制备吸附剂,利用BET、SEM和FTIR对吸附剂进行表征,通过吸附因素影响实验、解吸实验、选择性吸附实验、吸附动力学和等温模型拟合考察其对废水中Pb(2+)的吸附特性,并对实际废水进行了吸附研究。结果表明,污泥复合玉米芯碳化吸附剂比表面积为991.20 m(2+)的吸附特性,并对实际废水进行了吸附研究。结果表明,污泥复合玉米芯碳化吸附剂比表面积为991.20 m2/g,以中孔为主,其对模拟废水中Pb2/g,以中孔为主,其对模拟废水中Pb(2+)的较佳吸附条件:初始pH、吸附温度和吸附时间分别为4.0~5.5、25℃和4.0 h,当Pb(2+)的较佳吸附条件:初始pH、吸附温度和吸附时间分别为4.0~5.5、25℃和4.0 h,当Pb(2+)初始浓度为10 mg/L、较佳吸附剂投加量为6 g/L时,Pb(2+)初始浓度为10 mg/L、较佳吸附剂投加量为6 g/L时,Pb(2+)去除率为90.10%,吸附量为1.50 mg/g。经0.5 mol/L的HCl解吸6次,吸附剂对Pb(2+)去除率为90.10%,吸附量为1.50 mg/g。经0.5 mol/L的HCl解吸6次,吸附剂对Pb(2+)的去除率仍达92%以上。污泥复合玉米芯碳化吸附剂对Pb(2+)的去除率仍达92%以上。污泥复合玉米芯碳化吸附剂对Pb(2+)的吸附符合准二级动力学模型(R(2+)的吸附符合准二级动力学模型(R2为0.997 1~0.999 5)和Freundlich吸附等温模型(R2为0.997 1~0.999 5)和Freundlich吸附等温模型(R2为0.992 0~0.996 6),为非均匀化学吸附,羟基和羧基起主要作用。Cu2为0.992 0~0.996 6),为非均匀化学吸附,羟基和羧基起主要作用。Cu(2+)、Cd(2+)、Cd(2+)和Ni(2+)和Ni(2+)对Pb(2+)对Pb(2+)产生竞争吸附作用,选择性吸附顺序为:Cu(2+)产生竞争吸附作用,选择性吸附顺序为:Cu(2+)>Pb(2+)>Pb(2+)>Ni(2+)>Ni(2+)>Cd(2+)>Cd(2+)。实际废水(COD、Pb(2+)。实际废水(COD、Pb(2+)和Cu(2+)和Cu(2+)初始浓度分别为563,23.20,29.86 mg/L)处理结果表明,当吸附剂投加量为32 g/L时,Pb(2+)初始浓度分别为563,23.20,29.86 mg/L)处理结果表明,当吸附剂投加量为32 g/L时,Pb(2+)去除率达96.10%,剩余浓度为0.90 mg/L,达到《污水综合排放标准》(GB 8978—1996)第一类污染物最高允许排放浓度限值,此时Cu(2+)去除率达96.10%,剩余浓度为0.90 mg/L,达到《污水综合排放标准》(GB 8978—1996)第一类污染物最高允许排放浓度限值,此时Cu(2+)几乎被完全吸附。  相似文献   

3.
为研究高炉渣吸附水中Cr(6+)的吸附性能和吸附机理,实验考察了高炉渣投加量、吸附时间、吸附温度和溶液的pH值对Cr(6+)的吸附性能和吸附机理,实验考察了高炉渣投加量、吸附时间、吸附温度和溶液的pH值对Cr(6+)吸附效果的影响。结果表明,在Cr(6+)吸附效果的影响。结果表明,在Cr(6+)浓度为15 mg/L、常温(25℃)、振荡频率为120 r/min、高炉渣吸附剂投加量为0.2 g、吸附时间为60 min、废水pH=1.5的条件下,Cr(6+)浓度为15 mg/L、常温(25℃)、振荡频率为120 r/min、高炉渣吸附剂投加量为0.2 g、吸附时间为60 min、废水pH=1.5的条件下,Cr(6+)去除率可达到80.93%,吸附温度对吸附效果影响不大。通过吸附动力学和吸附等温线实验得出,高炉渣吸附Cr(6+)去除率可达到80.93%,吸附温度对吸附效果影响不大。通过吸附动力学和吸附等温线实验得出,高炉渣吸附Cr(6+)的吸附曲线符合伪一级动力学方程式和Freundlich吸附等温方程,吸附是容易发生的。  相似文献   

4.
《应用化工》2022,(12):2838-2842
以橘子皮、碱性氧化橘子皮的吸附废水中Pb(2+),研究吸附剂投加量、pH、吸附时间等对Pb(2+),研究吸附剂投加量、pH、吸附时间等对Pb(2+)去除率的影响吸附。结果表明,在初始离子浓度50 mg/L,投加量为1.0 g/L,pH 5.5,温度30℃,吸附时间2 h时,碱性氧化改性的橘子皮比普通橘子皮对Pb(2+)去除率的影响吸附。结果表明,在初始离子浓度50 mg/L,投加量为1.0 g/L,pH 5.5,温度30℃,吸附时间2 h时,碱性氧化改性的橘子皮比普通橘子皮对Pb(2+)的吸附效果更佳,去除率达到98.52%。准二级动力学方程和Langmuir吸附等温模型更加符合吸附过程。吸附过程是单分子层吸附,以化学吸附为主。  相似文献   

5.
为了考察高炉水淬渣处理实际电镀废水中重金属离子和COD的可行性,分别研究了吸附剂投加量、pH、吸附时间以及温度等单因素对Cu2+、Zn2+或COD去除率的影响。在单因素实验的基础上,应用 Box-Behnken中心组合方法进行三因素三水平试验,建立二次多项数学模型,并验证该模型的有效性。采用响应曲面法探讨吸附剂投加量、pH、吸附时间3个因子的交互作用及其最佳水平。结果表明:在吸附剂投加量为1.4g、pH为8、吸附时间为120min的最优化条件下,电镀废水中Cu2+、Zn2+和COD去除率达到最大,分别为99.35%、98.46%和53.63%。经对最优条件进行验证,预测值与验证实验平均值接近。吸附后废水中的Cu2+和Zn2+低于GB 21900-2008电镀废水新建企业污染物排放限值要求,而COD没有满足排放要求,所以仅应用高炉水淬渣吸附技术还不足以去除电镀废水中所有有害物质,因此可利用此技术作为辅助工艺,联合其他技术共同去除电镀废水中的重金属离子和有机物,使出水水质达到国家排放标准。  相似文献   

6.
《应用化工》2022,(11):2812-2815
采用一步共沉淀法,以FeCl_2·4H_2O、FeCl_3·6H_2O和氧化石墨烯为原料,在碱性条件下制备氧化石墨烯/四氧化三铁的磁性复合材料(MGO),考察pH、时间和吸附温度等对MGO吸附Cu(2+)的影响。结果表明,MGO对Cu(2+)的影响。结果表明,MGO对Cu(2+)的最佳吸附条件:20 mL浓度为200 mg/L、pH=5.5的Cu(2+)的最佳吸附条件:20 mL浓度为200 mg/L、pH=5.5的Cu(2+)溶液,加入MGO 20 mg,吸附温度30℃,吸附时间150min,最大吸附容量为61.4 mg/g,Cu(2+)溶液,加入MGO 20 mg,吸附温度30℃,吸附时间150min,最大吸附容量为61.4 mg/g,Cu(2+)的去除率为98.1%。MGO吸附Cu(2+)的去除率为98.1%。MGO吸附Cu(2+)符合准二级动力学模型。  相似文献   

7.
《应用化工》2022,(1):17-21
建立了普通橘子皮、Fe(Ⅲ)负载改性橘子皮对Pb(2+)的吸附研究,采用原子吸收光谱仪测定Pb(2+)的吸附研究,采用原子吸收光谱仪测定Pb(2+)的浓度,分别研究了吸附剂投加量、pH、吸附时间等对废水中Pb(2+)的浓度,分别研究了吸附剂投加量、pH、吸附时间等对废水中Pb(2+)的吸附研究,且对吸附动力学和吸附等温线进行了分析。结果表明,Fe(Ⅲ)负载改性的橘子皮比普通橘子皮对Pb(2+)的吸附研究,且对吸附动力学和吸附等温线进行了分析。结果表明,Fe(Ⅲ)负载改性的橘子皮比普通橘子皮对Pb(2+)的吸附效果更佳,最大吸附量为119.25 mg/g,吸附去除率达到95.66%,Langmuir能更好地描述普通橘子皮和Fe(Ⅲ)负载改性橘子皮吸附剂对Pb(2+)的吸附效果更佳,最大吸附量为119.25 mg/g,吸附去除率达到95.66%,Langmuir能更好地描述普通橘子皮和Fe(Ⅲ)负载改性橘子皮吸附剂对Pb(2+)的吸附过程,准二级动力学方程拟合结果R(2+)的吸附过程,准二级动力学方程拟合结果R2在0.999 4以上,说明吸附过程被化学吸附所控制。  相似文献   

8.
《应用化工》2022,(6):1367-1371
采用铝污泥作为吸附剂去除废水中的Cd(2+),研究铝污泥投加量、粒径、初始Cd(2+),研究铝污泥投加量、粒径、初始Cd(2+)浓度、溶液pH以及不同改性温度对吸附性能的影响。动力学实验和等温吸附实验表明,铝污泥对Cd(2+)浓度、溶液pH以及不同改性温度对吸附性能的影响。动力学实验和等温吸附实验表明,铝污泥对Cd(2+)的吸附结果符合准二级动力学和Freundlich等温吸附方程;Cd(2+)的吸附结果符合准二级动力学和Freundlich等温吸附方程;Cd(2+)的最大吸附量为3.32 mg/g,化学吸附是速率限制步骤。高温改性能够增强铝污泥对Cd(2+)的最大吸附量为3.32 mg/g,化学吸附是速率限制步骤。高温改性能够增强铝污泥对Cd(2+)的吸附能力,且煅烧温度越高,改性后的铝污泥吸附能力越强。经200,400,600℃改性的铝污泥对Cd(2+)的吸附能力,且煅烧温度越高,改性后的铝污泥吸附能力越强。经200,400,600℃改性的铝污泥对Cd(2+)的吸附量分别为原始铝污泥的1.2,1.5,2.2倍。  相似文献   

9.
《应用化工》2022,(8):1892-1898
研究磁性水热炭对Pb(2+)的吸附,采用原子吸收光谱仪测定Pb(2+)的吸附,采用原子吸收光谱仪测定Pb(2+)的浓度,控制单因素变量法研究了投加量、pH、时间和初始离子浓度等对Pb(2+)的浓度,控制单因素变量法研究了投加量、pH、时间和初始离子浓度等对Pb(2+)的吸附研究。结果表明,在初始离子浓度50 mg/L,投加量为0.05 g、pH 5.0,温度30℃以及吸附时间2 h时,吸附去除率达到93.88%,吸附量为46.94 mg/g。用准二级动力学方程模拟实验数据,相关系数可达到0.999 9,吸附过程可用Langmuir吸附等温模型来描述,说明磁性水热炭对Pb(2+)的吸附研究。结果表明,在初始离子浓度50 mg/L,投加量为0.05 g、pH 5.0,温度30℃以及吸附时间2 h时,吸附去除率达到93.88%,吸附量为46.94 mg/g。用准二级动力学方程模拟实验数据,相关系数可达到0.999 9,吸附过程可用Langmuir吸附等温模型来描述,说明磁性水热炭对Pb(2+)的吸附过程为单分子层的化学吸附。  相似文献   

10.
《应用化工》2019,(12):2838-2842
以橘子皮、碱性氧化橘子皮的吸附废水中Pb~(2+),研究吸附剂投加量、pH、吸附时间等对Pb~(2+)去除率的影响吸附。结果表明,在初始离子浓度50 mg/L,投加量为1.0 g/L,pH 5.5,温度30℃,吸附时间2 h时,碱性氧化改性的橘子皮比普通橘子皮对Pb~(2+)的吸附效果更佳,去除率达到98.52%。准二级动力学方程和Langmuir吸附等温模型更加符合吸附过程。吸附过程是单分子层吸附,以化学吸附为主。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号