首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Defect greatly affects the microscopic structure and electrical properties of perovskite piezoelectric ceramics, but the microscopic mechanism of defect‐driven macroscopic properties in the materials is not still completely comprehended. In this work, K0.5Na0.5NbO3+x mol CuSb2O6 lead‐free piezoelectric ceramics were fabricated by a solid‐state reaction method and the defect‐driven evolution of piezoelectric and ferroelectric properties was studied. The addition of CuSb2O6 induces the formation of dimeric (DC1) and trimeric (DC2) defect dipoles. At low doping concentration of CuSb2O6 (0.5‐1.0 mol%), DC1 and DC2 coexist in the ceramics and harden the ceramics, inducing a constricted double P‐E loop and high Qm of 895 at x=0.01. However, DC2 becomes more dominant in the ceramics with high concentration of CuSb2O6 (≥1.5 mol%) and thus leads to softening behavior of piezoelectricity and ferroelectricity as compared to the ceramic with x=0.01, giving a single slanted P‐E loop and relatively low Qm of 206 at x=0.025. All ceramics exhibit relatively high d33 of 106‐126 pC/N. Our study shows that the piezoelectricity and ferroelectricity of K0.5Na0.5NbO3 ceramics can be tailored by controlling defect structure of the materials.  相似文献   

2.
Lead‐free perovskite (1‐x)(K0.48Na0.48Li0.04)Nb0.95Sb0.05O3x(Bi0.5Na0.5)HfO3 piezoelectric ceramics were prepared by a traditional ceramic fabrication method. An investigation was conducted to assess the effects of (Bi0.5Na0.5)HfO3 content on the crystal structure, microstructure, phase‐transition temperatures, and piezoelectric properties of the ceramics. The X‐ray diffraction results, combined with the temperature dependence of dielectric properties, revealed that the ceramics experienced a structural transition from an orthorhombic phase to a tetragonal phase with the addition of (Bi0.5Na0.5)HfO3, and a coexistence of orthorhombic and tetragonal phases was identified in the composition range of 0.005≤x≤0.015. An obviously improved piezoelectric activity was obtained for the ceramics with compositions near the orthorhombic‐tetragonal phase boundary, among which the composition x=0.005 exhibited the maximum values of piezoelectric constant d33, and planar and thickness electromechanical coupling coefficients (kp and kt) of 246 pC/N, 0.435, and 0.554, respectively. Furthermore, the Curie temperature of the ceramics was found decreasing with the increase in (Bi0.5Na0.5)HfO3 content, but still maintaining above 300°C for the phase boundary compositions. These results indicate that the ceramics are promising lead‐free candidate materials for piezoelectric applications.  相似文献   

3.
Lead‐free 0.985[(0.94?x)Bi0.5Na0.5TiO3–0.06BaTiO3xSrTiO3]–0.015LiNbO3 [(BNT–BT–xST)–LN, x=0‐0.05] piezoelectric ceramics were prepared using a conventional solid‐state reaction method. It was found that the long‐range ferroelectric order in the unmodified (BNT–BT)–LN ceramic was disrupted and transformed into the ergodic relaxor phase with the ST substitution, which was well demonstrated by the dramatic decrease in remnant polarization (Pr), coercive field (Ec), negative strain (Sneg) and piezoelectric coefficient (d33). However, the degradation of the ferroelectric and piezoelectric properties was accompanied by a significant increase in the usable strain response. The critical composition (BNT–BT–0.03ST)–LN exhibited a maximum unipolar strain of ~0.44% and corresponding normalized strain, Smax/Emax of ~880 pm/V under a moderate field of 50 kV/cm at room temperature. This giant strain was associated with the coexistence of the ferroelectric and ergodic relaxor phases, which should be mainly attributed to the reversible electric‐field‐induced transition between the ergodic relaxor and ferroelectric phases. Furthermore, the large field‐induced strain showed relatively good temperature stability; the Smax/Emax was as high as ~490 pm/V even at 120°C. These findings indicated that the (BNT–BT–xST)–LN system would be a suitable environmental‐friendly candidate for actuator applications.  相似文献   

4.
The 0.968[(K0.48Na0.52)]Nb0.95+xSb0.05O3–0.032(Bi0.5Na0.5)ZrO3 [KNNxS–BNZ] lead‐free ceramics with nonstoichiometric niobium ion were fabricated via conventional solid‐state sintering technique and their piezoelectric, dielectric and ferroelectric properties were investigated. When x = 0.010, enhanced piezoelectric properties (d33 ≈ 421 pC/N and kp ≈ 0.47) were obtained due to the construction of rhombohendral—tetragonal phase boundary near room temperature. The KNNxS–BNZ ceramics possesses enhanced Curie temperature (Tc) with improved piezoelectric constant. A large d33 of ~421 pC/N and a high Tc ~256°C can be simultaneously induced in the ceramics with x = 0.010. Especially, good thermal stability was observed in a broad temperature range. The results indicated that our work could benefit development of KNN‐based ceramics and widen their application range.  相似文献   

5.
Highly transparent lead‐free (1‐x)K0.5Na0.5NbO3xSr(Zn1/3Nb2/3)O3 (KNN–xSZN) ferroelectric ceramics have been synthesized via a conventional pressureless sintering method. All samples are optically clear, showing high transmittance in the visible and near‐infrared regions (~70% and ~80% at 0.5 mm of thickness, respectively). This exceptionally good transmittance is due to the pseudo‐cubic phase structure as well as the dense and fine‐grained microstructure. In addition, a high energy storage density of 3.0 J/cm3 has been achieved for the 0.94K0.5Na0.5NbO3–0.06Sr(Zn1/3Nb2/3)O3 ceramics with submicron‐sized grains (~136 nm). The main reason is likely to be the typical relaxor‐like behavior characterized by diffuse phase transition, in addition to the dense and fine‐grained microstructure. This study demonstrates that the 0.94K0.5Na0.5NbO3–0.06Sr(Zn1/3Nb2/3)O3 ceramic is a promising candidate of lead‐free transparent ferroelectric ceramics for new areas beyond transparent electronic device applications.  相似文献   

6.
CuO‐added 0.96(Na0.5K0.5)(Nb1‐xSbx)O3‐0.04SrTiO3 ceramics sintered at the low temperature of 960°C for 10 hours showed dense microstructures and high relative densities. The specimens with 0.0 ≤  x ≤ 0.04 had orthorhombic‐tetragonal polymorphic phase boundary (PPB) structure. Tetragonal‐pseudocubic PPB structure was observed in specimens with 0.05 ≤  x ≤ 0.07, while the specimen with x = 0.08 has a pseudocubic structure. The structural variation in the specimens is explained by the decreases in the orthorhombic‐tetragonal transition temperature and Curie temperature with the addition of Sb5+ ions. The specimens with 0.05 ≤  x ≤ 0.07, which have tetragonal‐pseudocubic PPB structure, had large electric field‐induced strains of 0.14%‐0.016%. Moreover, these specimens also showed increased d33 values between 280 pC/N and 358 pC/N. In particular, the specimen with x = 0.055 showed particularly enhanced piezoelectric properties: d33 of 358 pC/N, kp of 0.45, and the electric field‐induced strain of 0.16% at 4.5 kV/mm.  相似文献   

7.
The high‐energy storage density reported in lead‐free AgNbO3 ceramics makes it a fascinating material for energy storage applications. The phase transition process of AgNbO3 ceramics plays an important role in its properties and dominates the temperature and electric field dependent behavior. In this work, the phase transition behavior of AgNbO3 ceramics was investigated by polarization hysteresis and dielectric tunability measurements. It is revealed that the ferrielectric (FIE) phase at room temperature possesses both ferroelectric (FE)‐like and antiferroelectric (AFE)‐like dielectric responses prior to the critical AFE‐FE transition point. A recoverable energy storage density of 2 J/cm3 was achieved at 150 kV/cm due to the AFE‐FE transition. Based on a modified Laudau phenomenological theory, the stabilities among the AFE, FE and FIE phases are discussed, laying a foundation for further optimization of the dielectric properties of AgNbO3.  相似文献   

8.
(Bi0.5Na0.5)TiO3–BiAlO3 lead‐free materials exhibit excellent ferroelectric properties, but its depolarization temperature is relatively low which is the major obstacle limiting the material's practical application. In this study, the effects of Manganese (Mn) modification on the microstructure, ferroelectric properties and depolarization behavior of 0.96(Bi0.5Na0.5)(Ti1?xMnx)O3–0.04BiAlO3 ceramics were investigated. It was found that the average grain size was enlarged and ferroelectric properties were enhanced with small Mn addition, meanwhile the tangent loss decreased. The remnant polarization (Pr) of the samples reached an optimal value (~41 μC/cm2) as Mn content increased up to 0.7 mol%, whereas further addition resulted in the decrease in Pr. Moreover, appropriate Mn addition (x=0.7%) can improve the depolarization temperature from 140°C to 161°C determined from thermally stimulated depolarization currents measurement.  相似文献   

9.
High pyroelectric performance and good thermal stability of pyroelectric materials are desirable for the application of infrared thermal detectors. In this work, enhanced pyroelectric properties were achieved in a new ternary (1?x)(0.98(Bi0.5Na0.5)(Ti0.995Mn0.005)O3–0.02BiAlO3)–xNaNbO3 (BNT–BA–xNN) lead‐free ceramics. The effect of NN addition on the microstructure, phase transition, ferroelectric, and pyroelectric properties of BNT–BA–xNN ceramics were investigated. It was found that the average grain size decreased as x increased to 0.03, whereas increased with further NN addition. The pyroelectric coefficient p at room temperature (RT) was significantly increased from 3.87 × 10?8Ccm?2K?1 at = 0 to 8.45 × 10?8Ccm?2K?1 at = 0.03. The figures of merit (FOMs), Fi, Fv and Fd, were also enhanced with addition of NN. Because of high p (7.48 × 10?8Ccm?2K?1) as well as relatively low dielectric permittivity (~370) and low dielectric loss (~0.011), the optimal FOMs at RT were obtained at = 0.02 with Fi = 2.66 × 10?10 m/V, Fv = 8.07 × 10?2 m2/C, and Fd = 4.22 × 10?5 Pa?1/2, which are superior to other reported lead‐free ceramics. Furthermore, the compositions with  0.03 exhibited excellent temperature stability in a wide temperature range from 20 to 80°C because of high depolarization temperature (≥110°C). Those results unveil the potential of BNT–BA–xNN ceramics for infrared detector applications.  相似文献   

10.
Piezoelectric knocking sensors with a dense microstructure were fabricated at 960°C for 2 hours using various CuO‐added (Na0.5K0.5)NbO3 (NKN)‐based piezoelectric ceramics. The practical sensitivity (SP) of the knocking sensor, which is the ability to detect the knocking of a car engine, was influenced by the g33 × kp value of the piezoelectric ceramics, indicating that the g33 × kp can be considered a figure of merit of the piezoelectric ceramics used in the knocking sensor. The knocking sensor synthesized using the CuO‐added 0.95(Na0.5K0.5)(Nb0.95Sb0.05)O3–0.05CaTiO3 (CNKNS–CT) ceramic, which showed a g33 of 25.7 Vm/N and kp of 0.46, exhibited a high SP of 119 mV/g at the resonance frequency. The SP of the commercial knocking sensor, which was synthesized using the Pb(Zr,Ti)O3 (PZT)‐based ceramic, was 112 mV/g at the resonance frequency. Hence, the knocking sensor fabricated using the CNKNS–CT piezoelectric ceramic can be used to replace the commercial PZT‐based knocking sensor.  相似文献   

11.
Ferroelectric phase coexistence was constructed in (1?x)BaTiO3xCaSnO3 lead‐free ceramics, and its relationship with the piezoelectricity of the materials was investigated to ascertain potential factors for strong piezoelectric response. It is found that the addition of CaSnO3 caused a series of phase transitions in the (1?x)BaTiO3xCaSnO3 ceramics, and a ferroelectric coexistence of rhombohedral, orthorhombic, and tetragonal phases is formed at = 0.08, where the ceramics exhibit the lowest energy barrier and consequently facilitate the polarization rotation and extension, resulting in the optimal piezoelectricity of d33 and kp values of 550 pC/N and 0.60, respectively. Our study provides an intuitive insight to understand the origin of high piezoelectricity in the ceramics with the coexistence of multiferroelectric phases.  相似文献   

12.
Lead‐free 0.77(Bi0.5Na0.5)TiO3–0.23Sr(Ti1?xFex)O3 (= 0, 0.04) (BNT–23STFx) was prepared using a conventional solid‐state reaction route. The effects of Fe‐modification on the chemical homogeneity from a μm scale perspective, the core‐shell domains structures, and the ferroelectric properties were investigated. The chemical homogeneity was analyzed using energy dispersive X‐ray mapping in scanning transmission electron microscopy mode, and the field‐dependent behaviors of strain and polarization were obtained to determine the ferroelectric properties. Substituting Fe3+ for Ti4+ resulted in completely different electrical behavior and properties, despite similar XRD patterns and microstructures. The Fe‐substitution promoted the mobility of Sr2+ ions in the BNT phase and, as a consequence, the chemical homogeneity increased and the core‐domains collapsed. Extending the ceramic processing, such as milling time and sintering time, affected domain distribution and compositional inhomogeneity, which led to a gradual transformation from ferroelectric to relaxor.  相似文献   

13.
The structures and functional properties of Na0.5Bi0.5TiO3xKNbO3 (NBT‐xKN) solid solutions, with x in the range from 0.01 to 0.09, were investigated using a combination of high‐resolution synchrotron X‐ray powder diffraction (SXPD) and ferroelectric property measurements. For low KN contents, an irreversible transformation from cubic to rhombohedral phases was observed after the application of a high electric field, indicating that the polar nanoregions (PNRs) in the unpoled state can be transformed into metastable long‐range ordered ferroelectric domains in the poled state. In contrast, the near‐cubic phase of the unpoled ceramics was found to be remarkably stable and was retained on cooling to a temperature of ?175°C. Upon heating, the field‐induced metastable ferroelectric rhombohedral phase transformed back to the nanopolar cubic state at the structural transformation temperature, TST, which was determined as approximately 225°C and 125°C for KN contents of 3% and 5% respectively. For the field‐induced rhombohedral phase in the poled specimens, the pseudo‐cubic lattice parameter, ap, exhibited an anomalous reduction while the inter‐axial angle increased towards a value of 90° on heating, resulting in an overall increase in volume. The observed structural changes were correlated with the results of temperature‐dependent dielectric, ferroelectric and depolarization measurements, enabling the construction of a phase diagram to define the stable regions of the different ferroelectric phases as a function of composition and temperature.  相似文献   

14.
Lead‐free 0.99[(1?x)Bi0.5(Na0.80K0.20)0.5TiO3?xBiFeO3]–0.01Ta (BNKT20–100xBF–1Ta) lead‐free piezoelectric ceramics were fabricated through conventional solid state sintering method. Results showed that change of BF content in the BNKT20–100xBF–1Ta induced a phase transition from ferroelectric to ergodic relaxor phase with a significant disruption of the long‐range ferroelectric order. A large electric‐field‐induced strain of 0.36% (at 80 kV/cm driving field, corresponding to a large signal of ~450 pm/V) which is derived from a reversible field‐induced ergodic relaxor to ferroelectric phase transformation, was obtained in the composition with x=0.01 near the ferroelectric‐ergodic relaxor phase boundary. Moreover, an attractive property for application in nonlinear actuators demanding enhanced thermal stability was obtained in this material, which showed a temperature‐insensitive strain characteristic in the temperature range from room temperature to 100°C.  相似文献   

15.
CuO‐added (LixK0.9?xNa0.1)NbO3 [C(LxK0.9?xN0.1)N] ceramics with 0.0≤x≤0.05 were well‐sintered at 960°C for 6 hours. The lattice parameters of the specimens decreased with the addition of Li2O. Defect polarization (PD) formed between Cu2+ions and oxygen vacancies. Double polarization vs electric field (P‐E) hysteresis and sprout‐shaped strain vs electric field (S‐E) curves were observed in these specimens with a large strain of 0.16% at 7.0 kV/mm, possibly owing to the presence of PD. When the P‐E curve was measured at temperatures higher than 75°C, the C(K0.9N0.1)N ceramic exhibited a normal P‐E hysteresis curve, whereas the C(L0.04K0.86N0.1)N ceramic maintained the double P‐E hysteresis curve up to 125°C, indicating that Li2O increased the thermal stability of PD. The latter specimen also showed the sprout shaped S‐E curve with a strain of 0.15% at 7.0 kV/mm after 104 cycles of a high electric field of 7.0 kV/mm.  相似文献   

16.
High‐performance lead‐free piezoelectric ceramics 0.94(K0.45Na0.55)1?xLix(Nb0.85Ta0.15)O3–0.06AgNbO3 (KNNLTAg‐x) were successfully prepared by spark plasma sintering technique. The doping effect of Li on the structural and electrical properties of KNNLTAg‐x (x=0, 0.02, 0.04, 0.06, 0.08 and 0.10) ceramics was studied. The lattice structure, ferroelectric and piezoelectric properties of the KNLNTAg‐x ceramics are highly dependent on the Li doping level. In particular, the Li dopant has a great impact on both Curie temperature Tc and orthorhombic‐tetragonal transition temperature TO‐T. The 4% Li‐doped sample exhibited relatively high TO‐T of 95°C, leading to a stable dynamic piezoelectric coefficient (d33*) of 220‐240 pm/V in a broad temperature range from 25°C to 105°C. Additionally, the 2% Li‐doped sample shows a high d33* of 320 pm/V at 135°C, suggesting its great potential for high‐temperature applications.  相似文献   

17.
The piezoelectric and ferroelectric properties of 0.76(Bi0.5Na0.5)TiO3–0.04(Bi0.5Li0.5)TiO3–0.2(Bi0.5K0.5)TiO3 (abbreviated as 0.76BNT–0.04BLT–0.2BKT) ceramics were investigated to clarify the optimal sintering temperature, and the vibration characteristics were examined for a compression‐mode accelerometer assembly in which 0.76BNT–0.04BLT–0.2BKT ceramics sintered at the optimized temperature served as the piezoelectric elements. The increase in the grain size of the 0.76BNT–0.04BLT–0.2BKT ceramics with the sintering temperature provides a beneficial contribution to the piezoelectric coefficient; however, it detrimentally contributes to the depolarization temperature. The charge sensitivity of the prototype accelerometers was evaluated with changes in the seismic mass and the layer number of the piezoceramics. The deviation between the theoretical and measured values of charge sensitivity was less than 10%.  相似文献   

18.
[(K0.43Na0.57)0.94Li0.06][(Nb0.94Sb0.06)0.95Ta0.05]O3 + x mol% Fe2O3 (KNLNST + x Fe, x = 0~0.60) lead‐free piezoelectric ceramics were prepared by conventional solid‐state reaction processing. The effects of small‐amount Fe2O3 doping on the microstructure and electrical properties of the KNLNST ceramics were systematically investigated. With increasing Fe3+ content, the orthorhombic‐tetragonal polymorphic phase transition temperature (TO‐T) of KNLNST + x Fe ceramics presented an obvious “V” type variation trend, and TO‐T was successfully shifted to near room temperature without changing TC (TC = 315°C) via doping Fe2O3 around 0.25 mol%. Electrical properties were significantly enhanced due to the coexistence of both orthorhombic and tetragonal ferroelectric phases at room temperature. The ceramics doped with 0.20 mol% Fe2O3 possessed optimal piezoelectric and dielectric properties of d33 = 306 pC/N, kp = 47.0%, = 1483 and tan δ = 0.023. It was revealed that the strong internal stress in the KNLNST + x Fe ceramics with higher Fe3+ contents (x = 0.40, 0.60) stabilized the orthorhombic phase, leading to the irregular “V” type rather than the usually observed monotonic phase transition with composition change in the ceramics.  相似文献   

19.
A noncontact temperature measurement technique based on fluorescence variation was used to depict the temperature-dependent evolution of phase transition of a ferroelectric material, that is, Nd3+-doped (K0.5Na0.5)NbO3 ceramics. The slope of the fluorescence intensity curve changes dramatically in the two temperature regions of 450-475 K and 650-675 K, which correspond to orthorhombic-tetragonal and tetragonal-cubic transitions as confirmed by the temperature dependence of dielectric constant. Furthermore, the small deviations in δTO-T and δTc indicate the good accuracy of this noncontact method. This work can guide other ergodic ferroelectrics to describe phase experience by the noncontact fluorescence method.  相似文献   

20.
In this study, the influence of Li substitution on the piezoelectric performance of lead‐free K0.5Na0.5NbO3 (KNN)‐epoxy composites is explored. KNN piezoceramic particles modified with 0‐12 mol% of Li are prepared via a double calcination technique, resulting in a perovskite particulate which transitions from an orthorhombic to tetragonal crystal structure between 6 and 9 mol% of Li, and contains a minor nonperovskite second phase from 6 mol%. A cuboid particle morphology is evident in all cases, though tetragonal KNN‐based particles have formed with serrated edges and fractures. The particles are dispersed at 10 vol% in an epoxy matrix to develop both random and dielectrophoretically structured (K,Na,Li)NbO3‐epoxy composites. The dielectric constant of the composites appears almost independent of Li content, while the piezoelectric charge constant of structured composites peaks before the polymorphic phase transition, at 3 mol% of Li. The peak in performance can be attributed to the increased primary particle size of the composition in combination with its single phase orthorhombic crystal structure. The enhancement of the energy harvesting figure of merit, derived from substituting 3 mol% of Li in the KNN particulate, makes these composites an interesting choice for flexible energy generators.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号