共查询到20条相似文献,搜索用时 15 毫秒
1.
目的随着机器人交互技术的不断发展,研究者们开始针对机器人与人之间的情感交流展开探索,机器人面部表情设计成为研究的热点。为了推动人与机器人的互动交流,研究者需要构造能够被人们接受的机器人面部表达方式。然而,到目前为止,关于人对机器人面部表情感知的评估机制还缺乏相对系统的分析和总结,因此,希望通过对机器人面部表情评估量表的分析和归纳,为设计师在不同情境下选择合适的评估方法,提供指导建议。方法采用文献调研方法,选取五十一篇相关文献进行综述分析,从而梳理和分析适用于机器人面部表情评估的量表。文献关键词包含机器人面部表情设计、机器人面部表情评估、机器人情绪评估量表等,文献主要来自于ACM、Springer、IEEE等数据库,文献发表的年度范围是1977~2019年。通过文献调研分析,提取了六类最重要的机器人面部表情评估量表,包括同理心量表、心理状态三维度量表、机器人焦虑量表、积极—消极自我报告量表、测量个体对机器人感知的量表和李克特量表等,详细阐述了每类量表中的具体形式及其变种。从设计要点、来源领域及评估角度三个方面分析了六类评估量表的特点。最后形成了机器人面部表情评估量表的适用建议。结论对机器人面部表情评估量表进行归类、总结,并且提出了每个量表的适用阶段和情境。 相似文献
2.
As a key link in human-computer interaction, emotion recognition can enable robots to correctly perceive user emotions and provide dynamic and adjustable services according to the emotional needs of different users, which is the key to improve the cognitive level of robot service. Emotion recognition based on facial expression and electrocardiogram has numerous industrial applications. First, three-dimensional convolutional neural network deep learning architecture is utilized to extract the spa... 相似文献
3.
目的 探索广告设计中情感化表现的作用及应用.方法 从工业和科学为人类打开新世界这一背景出发,结合广告的产生与发展探索广告的更新与变化,接着选取广告设计为落脚点,就其普遍性、广泛性特点下的情感化表达需求进行分析,深刻总结情感在广告中的重要性及其所发挥的传播信号、行为动力、情感迁移甚至是负面的作用,在此基础上总结具体的情感应用原则,提出理性、艺术、幽默、原创等几个方面具体的设计原则,最后将视线集中于建立图形、文字、色彩等元素的吸引受众眼球的直观情感表达上,以及更深层次的情感诉求传达上,探讨具体的应用策略.结论 广告设计的视觉传达效果与情感的承载所促成的多方交流密不可分,正是情感的融入与升华促成了广告作品更加丰富的文化气息与人文精神,让广告作品具备了陶冶情操、净化灵魂、情感愉悦等审美特征,满足了现代人多样化的心理需求,实现了广告宣传的商业目的. 相似文献
4.
负性面部表情影响面孔身份识别的实验研究 总被引:1,自引:0,他引:1
为验证负性面部表情对面孔身份识别的干扰效应,采用中国人的面孔表情图片为材料,设计了两个Garner范式实验:实验一重复过去研究采用愤怒与快乐表情图片为材料,实验二采用愤怒与悲伤表情图片为材料。结果发现,愤怒与快乐表情不影响面孔身份识别,而愤怒与悲伤表情影响面孔身份识别,说明负性表情能够影响面孔身份识别,结果支持表情身份非独立加工观。这一结果也弥补了过去研究难以发现表情影响身份识别的不足。 相似文献
5.
Diana Baby Sujitha Juliet M. M. Anishin Raj 《International journal of imaging systems and technology》2023,33(1):419-426
Early detection of leukemia increases the chances of a speedier recovery. If a patient exhibits any symptoms, doctors would often examine a blood sample slide under a microscope to detect hematological malignancies. Manually categorizing leukocytes as normal or abnormal requires examining the many characteristics of the cells, which is time-consuming and error-prone. This research aims to create a transfer learning-based Acute Lymphocytic Leukemia (ALL) detection system that is both efficient and easy. To overcome the critical challenges associated with feature extraction, we used EfficientNet, the most recent and most substantial deep learning model. In this article, eight EfficientNets variations are used to extract features and are compared based on classification accuracy. This work uses an ensemble of three sophisticated classifiers, namely Support Vector Machine (SVM), Random Forest, and Logistic Regression, which achieves a classification accuracy of 98.5%. 相似文献
6.
目的 探究多种感官信息传递对现代包装设计的影响,并深入探讨两者的结合方式,分析多感官体验下的包装设计之可行路径。方法 包装设计中对消费者的情感关照十分重要,且其所融入的方式有着多元化的特征。首先从感官对人们生活认知的帮助出发,肯定感官体验对人们情感的影响;其次将这种基于感官的表达引入现代包装设计中,指出人们对包装的认知不仅限于视觉,还涉及触觉、听觉、嗅觉和味觉等方面不同程度的认知和探索,从而引出基于多感官表达的现代包装设计路径;最后从多感官表达的内涵着手,探索基本原则之下的灵活尝试,总结科学的应用路径,并归纳具体设计方法。结论 融合了多种不同感官表达的包装设计作品,能够在多个层面刺激消费者的神经,在消费者脑海中留下深刻的印象。 相似文献
7.
Oday A. Hassen Nur Azman Abu Zaheera Zainal Abidin Saad M. Darwish 《计算机、材料和连续体(英文)》2022,70(2):2453-2469
A robust smile recognition system could be widely used for many real-world applications. Classification of a facial smile in an unconstrained setting is difficult due to the invertible and wide variety in face images. In this paper, an adaptive model for smile expression classification is suggested that integrates a fast features extraction algorithm and cascade classifiers. Our model takes advantage of the intrinsic association between face detection, smile, and other face features to alleviate the over-fitting issue on the limited training set and increase classification results. The features are extracted taking into account to exclude any unnecessary coefficients in the feature vector; thereby enhancing the discriminatory capacity of the extracted features and reducing the computational process. Still, the main causes of error in learning are due to noise, bias, and variance. Ensemble helps to minimize these factors. Combinations of multiple classifiers decrease variance, especially in the case of unstable classifiers, and may produce a more reliable classification than a single classifier. However, a shortcoming of bagging as the best ensemble classifier is its random selection, where the classification performance relies on the chance to pick an appropriate subset of training items. The suggested model employs a modified form of bagging while creating training sets to deal with this challenge (error-based bootstrapping). The experimental results for smile classification on the JAFFE, CK+, and CK+48 benchmark datasets show the feasibility of our proposed model. 相似文献
8.
目的 为优化人与机器人动作情感交互方式,研究类人型机器人动作单模态情绪表达的可识别性,探究类人型机器人动作情绪识别的影响因素。方法 以类人型机器人NAO为例,采用问卷调查的方式,基于离散情绪模型,获取机器人NAO动作表达情绪的识别性、效价和唤醒度,研究类人型机器人动作的情绪识别性、效价和唤醒度,基于认知匹配理论研究类人型机器人动作与真人模拟动作、真人自然动作情绪表达差异的影响因素。结果 人类能够通过类人型机器人动作的单模态情绪表达,在不同情感语义上进行比较细腻的情绪识别,机器人形态及动作的幅度、速度、力量是情绪识别的影响因素。结论 建立类人型机器人动作与情感语义、效价及唤醒度的关系模型,以及类人型机器人动作情绪能量图,为机器人情感表达和动作交互设计提供较为系统的参考模型。 相似文献
9.
目的 基于用户旅程图的分析视角,研究机器人通过动作展现复杂社会情感的方法。方法 首先,对社会情感的定义和内容进行分析,将社会情感拆分成个体自身的情感和面向他人的情感;其次,梳理用户旅程图的实施方法,提取事件、用户、触点、阶段和步骤的要素类比映射机器人情感表达,得到角色、情景、刺激、情感表达流程和情感表达步骤的研究要素;最后,基于上述内容生成了机器人社会情感动作表达的方法,并通过宠物机器人的情感表达任务实验验证了识别度。结论 研究提出的机器人社会情感动作表达方法具有模块化表达、系统化设计和流程化分析的优势,包括能够将社会情感拆分成简单的基本情感模块,优化机器人复杂情感表达问题;能够通过系统化设计呈现情感变化过程,展现出机器人的交互意图;能够以流程化分析的方法将情感变化过程细化成具体的组合动作,为机器人情感表达动作的设计提供指导。 相似文献
10.
11.
12.
13.
Khalil Khan Rehan Ullah Khan Jehad Ali Irfan Uddin Sahib Khan Byeong-hee Roh 《计算机、材料和连续体(英文)》2021,68(3):3483-3498
Race classification is a long-standing challenge in the field of face image analysis. The investigation of salient facial features is an important task to avoid processing all face parts. Face segmentation strongly benefits several face analysis tasks, including ethnicity and race classification. We propose a race-classification algorithm using a prior face segmentation framework. A deep convolutional neural network (DCNN) was used to construct a face segmentation model. For training the DCNN, we label face images according to seven different classes, that is, nose, skin, hair, eyes, brows, back, and mouth. The DCNN model developed in the first phase was used to create segmentation results. The probabilistic classification method is used, and probability maps (PMs) are created for each semantic class. We investigated five salient facial features from among seven that help in race classification. Features are extracted from the PMs of five classes, and a new model is trained based on the DCNN. We assessed the performance of the proposed race classification method on four standard face datasets, reporting superior results compared with previous studies. 相似文献
14.
目的 为快速准确识别消费者对产品意象的认知,提出一种基于分类器链的产品意象识别方法.方法 首先,构建产品意象数据集,通过相似性聚类和网络爬虫得到产品意象词与产品图像,在此基础上,进行产品意象实验,获得消费者对于产品意象的认知,构建产品意象数据集;然后,提取图像特征,利用卷积神经网络RestNet50提取产品图像特征;最后,使用分类器链算法构建产品意象识别模型,提出基于混淆矩阵与条件熵的分类器链标签顺序确定方法,确定产品意象标签顺序.结论 为了验证所述标签顺序确定方法在识别产品意象中具有优越性设计了对比实验.实验结果表明,相较于其他方法,基于分类器链的产品多标签意象识别方法考虑了标签的识别结果与相关关系,能显著提升模型对于产品多标签意象的预测性能. 相似文献
15.
Sentiment analysis is a research hot spot in the field of natural language processing and content security. Traditional methods are often difficult to handle the problems of large difference in sample distribution and the data in the target domain is transmitted in a streaming fashion. This paper proposes a sentiment analysis method based on Kmeans and online transfer learning in the view of fact that most existing sentiment analysis methods are based on transfer learning and offline transfer learning. We first use the Kmeans clustering algorithm to process data from one or multiple source domains and select the data similar to target domain data to establish the classifier, so that the processed data does not negatively transfer the data in the target domain. And then create a new classifier based on the new target domain. The source domain classifier and target domain classifier are combined with certain weights by using the homogeneous online transfer learning method to achieve sentiment analysis. The experimental results show that this method has achieved better performance in terms of error rate and classification accuracy. 相似文献
16.
目的 为探索老龄智能陪伴机器人的表情设计特征,依据FACES国际表情数据库等,提取7种基本面部表情类型,得到老龄智能陪伴机器人表情样本21个.方法 首先,基于PAD情感模型,对老龄智能陪伴机器人表情样本进行实验评估.实验自变量为老龄智能陪伴机器人的表情风格和被试年龄,实验因变量为表情设计的识别率、满意度和PAD量表得分.然后,通过数据统计分析,得出老龄智能陪伴机器人的表情风格、被试年龄与PAD量表得分之间的影响机制,进而得到影响老年人对智能陪伴机器人表情交互的接受度和情感反应规律.最后,通过实际设计案例验证研究方法的可行性.结论 通过PAD情感模型测量数据统计分析,得到老龄智能陪伴机器人的表情交互设计特征和规律,为老龄智能陪伴机器人表情交互设计领域提供相关理论支持. 相似文献
17.
《国际设备工程与管理》2024,29(1):14-27
To evaluate the efficacy of online learning and explore the impact of long-term use of electronic products on facial skin as well as eyes.A cross-sectional survey was conducted to 180 sophomores in Xi'an Jiaotong University by cluster random sampling from September to October 2021.The questionnaire covering study condition,skin lesion and Ocular Surface Disease Index.χ2 test was used to compare the facial skin condition among different groups,and spearman correlation test was used to test the correlation of rank data.During online education,students'learning pressure is reduced,their autonomy is improved,and the learning efficiency is reduced.There were differences in the incidence of facial itching and papules among different groups.Duration of use of electronic products was positively correlated with the facial itching,with an r value of 0.231(P<0.05);the proportion of pigmentation in non-blue light protection groups(12.8%)was higher than that in blue light protection groups(1.7%),the difference was statistically significant(χ2=8.384,P<0.05).The prevalence of dry eye among college students is 66.7%,and the proportion of moderate to severe dry eye is 34.5%.The study autonomy has been improved during online teaching.Long-term use of electronic products and no blue light protection have an impact on facial skin.Students should enhance the knowledge of skin-care and eye-care and develop better habits. 相似文献
18.
目的为了以更加客观的方式评估用户体验,拓展用户研究的途径,引入表情识别技术对已有用户研究方法进行优化与探索。方法以阅读APP为研究载体,以表情识别与卷积神经网络算法为技术手段,通过设计人机交互实验将其应用于用户研究过程中,建立用户面部表情与用户主观满意度的映射关系。结果针对阅读APP\"X\",开展了基于表情识别技术和传统问卷访谈的双向设计研究,并采用对比验证的方法得出了基于表情识别技术的用户满意度客观度量方法的有效性和可行性,进而挖掘了基于表情识别方法的用户研究优势。结论基于表情识别技术的用户研究方法在产品交互设计中具有一定的通用性。通过识别分析用户与产品进行人机交互时的面部表情动态变化,可以使用户体验评估更加客观并容易解读,准确定位产品交互体验问题,为设计领域中的用户研究和认识提供了新思路,同时也为表情识别技术与产品设计的交叉融合提供了理论和实践意义的参考。 相似文献
19.
文章基于多示例学习的跟踪框架,引入改进型的分布场特征并融合目标时间维度信息,提出了一种新的跟踪算法。新的特征能够更为有效地描述目标的空间结构信息,对于目标模糊、局部遮挡以及细微形变有良好的鲁棒性。加入的目标时间维度信息融合方法,包含了目标的历史信息,同时也能响应目标的外观变化,提高了跟踪器从跟踪异常中恢复的能力。通过对比新算法与其他先进算法在多组测试视频上的跟踪结果,可以发现本文提出的算法具有更为优异的性能,能够在各种复杂情况下对目标进行稳定的跟踪。 相似文献
20.
Zia Ullah Muhammad Ismail Mohmand Sadaqat ur Rehman Muhammad Zubair Maha Driss Wadii Boulila Rayan Sheikh Ibrahim Alwawi 《计算机、材料和连续体(英文)》2022,73(3):4465-4487
Facial expression recognition has been a hot topic for decades, but high intraclass variation makes it challenging. To overcome intraclass variation for visual recognition, we introduce a novel fusion methodology, in which the proposed model first extract features followed by feature fusion. Specifically, RestNet-50, VGG-19, and Inception-V3 is used to ensure feature learning followed by feature fusion. Finally, the three feature extraction models are utilized using Ensemble Learning techniques for final expression classification. The representation learnt by the proposed methodology is robust to occlusions and pose variations and offers promising accuracy. To evaluate the efficiency of the proposed model, we use two wild benchmark datasets Real-world Affective Faces Database (RAF-DB) and AffectNet for facial expression recognition. The proposed model classifies the emotions into seven different categories namely: happiness, anger, fear, disgust, sadness, surprise, and neutral. Furthermore, the performance of the proposed model is also compared with other algorithms focusing on the analysis of computational cost, convergence and accuracy based on a standard problem specific to classification applications. 相似文献