首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Carbon oxidation with platinum supported catalysts   总被引:3,自引:0,他引:3  
The effect of the support oxide, Pt precursor and reactant gas composition on the catalysis of soot oxidation was investigated using carbon black as a model soot and simulated exhaust gases. The Pt precursors used were Pt(NH3)4(OH)2, H2PtCl6·6H2O, Pt(NH3)4(NO3)2, and Pt(NH3)4Cl2. The support metal oxides used were SiO2, Al2O3, and ZrO2. Pt/SiO2 prepared from Pt(NH3)4(OH)2 showed the highest carbon oxidation activity. It had much higher activity in the condition of N2+O2+H2O+NO+SO2 than without NO and SO2.  相似文献   

2.
The selective catalytic reduction of NOx by methane on noble metal-loaded sulfated zirconia (SZ) catalysts was studied. Ru, Rh, Pd, Ag, Ir, Pt, and Au-loaded sulfated zirconia catalysts were compared with the intact sulfated zirconia. For the NO–CH4–O2 reaction, Ru, Rh, Pd, Ir, and Pt showed promotion effect on NOx reduction, while for the NO2–CH4–O2 reaction, only Rh and Pd showed promotion effect. Over intact and Rh, Pd, Ag, and Au-loaded sulfated zirconia, NOx conversion in NO2–CH4–O2 reaction was significantly higher than that in NO–CH4–O2 reaction, while clear difference was not observed over Ru, Ir, and Pt-loaded sulfated zirconia. Comparison of [NO2]/([NO]+[NO2]) in the effluent gases in NO–O2 and NO2–O2 reactions showed that Ru, Ir, and Pt has high activity for NO oxidation under the reaction conditions. These facts suggest that effects of these metals toward NOx reduction by methane can be categorized into the following three groups: (i) low activity for NO oxidation to NO2, and high activity for NO2 reduction to N2 (Pd, Rh); (ii) high activity for NO oxidation to NO2, and low activity for NO2 reduction to N2 (Ru, Ir, Pt); (iii) low activity for both reactions (Ag, Au). To confirm these suggestions, combination of these metals were investigated on binary or physically-mixed catalysts. The combination of Pd or Rh with Pt or Ru gave high activity for the selective reduction of NOx by methane.  相似文献   

3.
The impregnated platinum catalysts showed various platinum particle sizes depending on the nature of the platinum precursors (Pt(NH3)2(NO2)2 versus H2PtCl6) and on the pH of the Al2O3 suspension. The average platinum particle size increased with decrease in pH of the suspension in case of Pt(NH3)2(NO2)2, but this trend was vice versa for H2PtCl6. The product distribution in hydrodechlorination (HDC) of CCl4 varied greatly with the platinum particle size; the larger the platinum particle size was, the higher was the selectivity to CHCl3. To elucidate the origin of this platinum particle size effect on product distribution, CO chemisorption, NH3 and CO2 temperature-programmed desorption (TPD), high resolution transmission electron microscopy (HRTEM), temperature-programmed surface reaction (TPSR), Fourier-transformed-infrared spectra (FT-IR) and X-ray absorption fine structure (XAFS) experiments were carried out. The formation of completely dechlorinated CH4 was favorable owing to the strong chemisorption of CCl4 on the small platinum particles characterized by low surface coordination numbers and by an electron-deficient property. The nature of carbonaceous species formed on platinum surface at the beginning of reaction also varied greatly with platinum particle sizes and changes of electronic state of platinum particles affected catalytic activity and products’ distribution.  相似文献   

4.
The performance of four different alumina-supported noble metal catalysts (0.5% of Pd, Pt, Rh and Ru, respectively) for the deep oxidation of trichloroethene (1000–2500 ppmV, WHSV = 55 h−1) in air was studied in this work. Experiments were carried out at both dry and wet (20,000 ppm of H2O) conditions. Catalysts were compared in terms of activity, selectivity for the different reaction products (CO2, HCl, Cl2, C2Cl4, CCl4 and CHCl3), and stability at reaction conditions.

As general trend, the activity of the catalysts decreases in the order Ru  Pd > Rh > Pt. Concerning to the effect of the water addition, no important effect on the catalyst activity was observed, except in the case of Pt, for which an increase of the catalytic activity was observed. Reaction mechanism (and hence product distribution) is very similar for Rh, Pd and Pt, being in these cases C2Cl4 the only organochlorinated by-product detected. In the case of Ru, the reaction mechanism seems to be quite different, CCl4 and CHCl3 being the main organic by-products.

Simple power-law kinetic expressions (first order on trichloroethene concentration for Pd, Rh and Ru, and zeroth order for Pt) provide fairly good fits for catalytic performance of the studied catalysts.

Finally, deactivation studies show that both formation of active metal chlorides (especially in the case of Rh) and fouling (especially for Pd and Pt) are the main deactivation causes.  相似文献   


5.
Catalytic wet air oxidation of p-hydroxyphenylacetic acid and p-hydroxybenzoic acid, two important pollutants present in the olive oil mill wastewaters, was studied in a batch reactor using platinum and ruthenium catalysts supported on titanium and zirconium oxides at 140 °C and 50 bar of total air pressure. Reaction pathways for the oxidation of these two substrates were proposed, with formation of different aromatic compounds and short-chain organic acids through hydroxylation and decarboxylation reactions.

It was observed that the conversion and the mineralization of these two substrates were markedly affected by the nature of the ruthenium precursor (RuCl3 or Ru(NO)(NO3)3), with the non-chlorine containing salt giving the best performances. Calcination of the catalyst precursor before reduction was detrimental. The nature of the metallic precursor (H2PtCl6 or Pt(NH3)4(NO3)2) had little influence on the catalytic properties of platinum catalysts, whereas the textural properties of the support were an important factor.  相似文献   


6.
以海绵铂为原料合成出[Pt(NH36]Cl4络合物,采用热重分析(TG)、扫描电镜-能谱(SEM-EDS)、紫外-可见分光光度计(UV-Vis)、质谱(MS)、X射线光电子能谱(XPS)等手段确定了[Pt(NH36]Cl4的结构组成;以H2PtCl6、Pt(NH34Cl2和[Pt(NH36]Cl4为前驱体,采用等体积浸渍法制得Pt/Beta催化剂,采用X射线衍射(XRD)、X射线荧光光谱(XRF)、氨程序升温脱附(NH3-TPD)、氢氧滴定(H2-O2)、透射电镜(TEM)、氢气程序升温脱附(H2-TPD)等表征了Pt/Beta催化剂的物化性质,并考察了Pt/Beta催化剂的多环芳烃选择性开环性能。结果表明,[Pt(NH36]Cl4络合物具有更高的“抗自还原”能力,可从前驱体结构上降低铂氨前驱体受热分解时的自还原现象。前驱体结构对铂纳米颗粒的几何尺寸及分布有较大影响,一方面络合物的价态显著影响前驱体与分子筛间的静电作用,进而影响铂纳米颗粒的落位与尺寸;另一方面络合物的空间结构影响前驱体在分子筛微孔中的分布,影响铂纳米颗粒的Ostwald熟化速率。前驱体结构可调变Pt/Beta催化剂的双功能匹配关系,显著影响Pt/Beta催化剂转化甲基萘的活性、稳定性,采用[Pt(NH36]Cl4前驱体制备的Pt/Beta催化剂具有更优的活性及长周期稳定性。  相似文献   

7.
A mechanochemical method was employed to prepare modified iron molybdate catalysts with various metal salts as precursors. The physicochemical properties of the iron molybdate catalysts were characterized, and their performances in catalyzing the reaction from methanol to formaldehyde (HCHO) were evaluated. Iron molybdate catalysts doped with Co(NO3)2·6H2O and Al(NO3)3·9H2O resulted in high HCHO yields. Compared with a commercial catalyst, the HCHO yields in the reaction with the modified catalyst at an optimal Co/Mo molar ratio reached 97.37%. According to chemical state analysis, the formation of CoO and the efficient decrease in the MoO3 sublimation rate could be important factors enhancing the HCHO yield in reactions catalyzed with iron molybdate doped with different Co/Mo mole ratios.  相似文献   

8.
The effect of different reducing agents (H2, CO, C3H6 and C3H8) on the reduction of stored NOx over PM/BaO/Al2O3 catalysts (PM = Pt, Pd or Rh) at 350, 250 and 150 °C was studied by the use of both NO2-TPD and transient reactor experiments. With the aim of comparing the different reducing agents and precious metals, constant molar reduction capacity was used during the reduction period for samples with the same molar amount of precious metal. The results reveal that H2 and CO have a relatively high NOx reduction efficiency compared to C3H6 and especially C3H8 that does not show any NOx reduction ability except at 350 °C over Pd/BaO/Al2O3. The type of precious metals affects the NOx storage-reduction properties, where the Pd/BaO/Al2O3 catalyst shows both a high storage and a high reduction ability. The Rh/BaO/Al2O3 catalyst shows a high reduction ability but a relatively low NOx storage capacity.  相似文献   

9.
The solubility of Pd(NO3)2 in water is moderate whereas it is completely soluble in diluted HNO3 solution. Pd/MIL-101(Cr) and Pd/MIL-101-NH2(Cr) were synthesized by aqueous solution of Pd(NO3)2 and Pd(NO3)2 solution in dilute HNO3 and used for CO oxidation reaction. The catalysts synthesized with Pd(NO3)2 solution in dilute HNO3 showed lower activity. The aqueous solution of Pd(NO3)2 was used for synthesis of mono-metal Ni, Pd and bimetallic PdNi nanoparticles with various molar ratios supported on MOF. Pd70Ni30/MIL-101(Cr) catalyst showed higher activity than monometallic counterparts and Pd+ Ni physical mixture due to the strong synergistic effect of PdNi nanoparticles, high distribution of PdNi nanoparticles, and lower dissociation and desorption barriers. Comparison of the catalysts synthesized by MIL-101(Cr) and MIL-101-NH2(Cr) as the supports of metals showed that Pd/MIL-101-NH2(Cr) outperforms Pd/MIL-101-(Cr) because of the higher electron density of Pd resulting from the electron donor ability of the NH2 functional group. However, the same activities were observed for Pd70Ni30/MIL-101(Cr) and Pd70Ni30/MIL-101-NH2(Cr), which is due to a less uniform distribution of Pd nanoparticles in Pd70Ni30/MIL-101-NH2(Cr) originated from amorphization of MIL-101-NH2(Cr) structure during the reduction process. In contrast, Pd70Ni30/MIL-101(Cr) revealed the stable structure and activity during reduction and CO oxidation for a long time.  相似文献   

10.
The catalytic activity of supported noble metal catalysts (Pt, Rh, Ru, and Pd) for the WGS reaction is investigated with respect to the physichochemical properties of the metallic phase and the support. It has been found that, for all metal-support combinations investigated, Pt is much more active than Pd, while Rh and Ru exhibit intermediate activity. The turnover frequency (TOF) of CO conversion does not depend on metal loading, dispersion or crystallite size, but depends strongly on the nature of the metal oxide carrier. In particular, catalytic activity of Pt and Ru catalysts, is 1-2 orders of magnitude higher when supported on “reducible” (TiO2, CeO2, La2O3, and YSZ) rather than on “irreducible” (Al2O3, MgO, and SiO2) metal oxides. In contrast to what has been found in our previous study over Pt/TiO2 catalysts, catalytic activity of dispersed Pt does not depend on the structural and morphological characteristics of CeO2, such as specific surface area or primary crystallite size.  相似文献   

11.
Different γ-Al2O3 supported Ir, Pd, Ru, Rh and Pt catalysts were tested in enantioselective 1-phenylpropane-1,2-dione hydrogenation using cinchona alkaloid modifiers. Activity and enantioselectivity over Ir and Ru catalysts were low. Pd catalyst was active in the hydrogenation of 1-phenylpropane-1,2-dione, however, the enantioselectivity over this catalyst was almost negligible. Over Pd hydrogenation proceeded mainly via hydrogenation of the C1O1 carbonyl group, which is attached to the phenyl ring. Hydrogenation over Pd did not proceed in the second hydrogenation step via an enol form as found for ethyl pyruvate hydrogenation over Pd. The structure-selectivity relationship and solvent effects are similar over Pt and Rh in the first hydrogenation step. However, in the second hydrogenation step of hydroxyketones to diols large mechanistical differences between Pt and Rh were observed. Although the activity over Rh catalysts was lower than over Pt after optimization the best result obtained with Rh/γ-Al2O3 (5754 Lancaster) was 60% ee in toluene at maximum yield of 28%, which makes Rh a promising metal for enantioselective hydrogenation.  相似文献   

12.
The effects of pretreatment of catalyst on its surface properties and the HDS activity of a 0.49% Ru/Al2O3 catalyst were studied in a single-pass, differential microreactor. The surface properties of the catalyst were measured by NH3-TPD and XPS analysis. The Ru/Al2O3 catalyst was pretreated in three ways: reduced in H2 (Ru-R catalyst), oxidized in air and subsequently reduced in H2 (Ru-OR catalyst), or sulfided in H2S/H2 (Ru-S catalyst). Three types of peaks (low, middle, and high temperatures) were observed in the NH3-TPD study. The predominant high-temperature peak was observed for both the Ru-OR and Ru-S catalyst, pretreated at 300°C. Mass spectrometry showed that the high-temperature peak in NH3-TPD consisted of N2 and H2 formed from the decomposition of NH3 on the ruthenium sites. NO adsorption of unsaturated Ru species was related to the low-temperature peak in the NH3-TPD. The XPS analysis showed that the peaks at 279.9 eV, 280.6 eV, and 282.5 eV were ascribed to metallic ruthenium, RuO2, and RuO3, respectively. The low-, middle-, and high-temperature peaks were assigned to RuO2, acid sites on alumina, and metallic Ru, respectively. Metallic ruthenium was effective in the HDS of thiophene and the decomposition of NH3.  相似文献   

13.
The redox behaviors of iron oxides, which were modified with Pd, Pt, Rh, Ru, Al, Ce, Ti and Zr as additives, were investigated using temperature-programmed reaction (TPR) technique. The modified iron oxides were prepared by co-precipitation method using urea precipitant. The role of additives was also examined using XRD and SEM analysis in detail. As a result, Pd, Pt, Rh and Ru additives have an effect on promoting the reduction and lowering the re-oxidation temperature of iron oxide. Especially, it is revealed that the effect of Rh species on lowering the reduction temperature is attributed to decrease of activation energy for H2 reduction according to Fe2O3 → Fe3O4 course. Meanwhile, Al, Ce, Ti and Zr additives played an important role in prevention of deactivation of iron oxide by repeated redox cycles. Redox performances of iron oxides were also enhanced due to cooperative effects by co-addition of Rh and another species such as Al, Ce and Zr. Finally, Fe–O/(Rh, Ce, Zr) sample exhibited good performance for H2 evolution by water-splitting through synergistic effect of component additives.  相似文献   

14.
石斌  成文文  李志祥 《化工进展》2015,34(10):3671-3675
通过等体积浸渍法分别将Ni(NO3)2、NiCl2、NiSO4 3种镍前体浸渍于A12O3或SiO2载体上,然后通过H2高温还原法制备了负载型镍基催化剂,考察了镍前体、载体种类、镍负载量、反应条件等对镍基催化剂苯酚加氢性能的影响。结果表明,对比3种镍前体,在H2高温还原体系中Ni(NO3)2最容易被还原,制备的镍基催化剂苯酚加氢活性最高。SiO2负载的镍基催化剂活性远高于γ-Al2O3催化剂。适宜的Ni负载量有助于活性组分的分散和催化活性的提高。镍基催化剂的苯酚加氢产物以环己醇为主,相对缓和的反应条件更容易生成环己酮。在非极性溶剂正庚烷或环己烷存在下,苯酚加氢反应速率远远高于极性溶剂水或乙醇存在下的结果,而且环己酮的选择性更高。  相似文献   

15.
The visible light induced photocatalytic activity of tungsten trioxide powders   总被引:16,自引:0,他引:16  
The preparation, characterization and photoreactivity of tungsten trioxide powders are presented. Tungsten trioxide powders were prepared by air annealing of various W precursors. The effects of W precursor type and pretreatment conditions on the physical properties, and photocatalytic performance of the obtained WO3 powders were examined. The photooxidation of water to oxygen and protons in the presence of reducible additives Ce4+, using the luminous and near IR illumination was used as a test reaction to evaluate the activity of the powders. Increasing annealing temperatures gave materials with a high degree of crystallinity and red-shifted the onset of light absorption. The light absorption of the obtained powders in the long wavelength region versus the type of the W precursor increased in the order: H2WO4<(NH4)6W12O39<(NH4)10W12O41. The level of crystallinity of the obtained powders increased in the order: (NH4)10W12O41≈(NH4)6W12O392WO4. The activity of the WO3 powders depended on the type of W precursor used, annealing conditions, and the physico-chemical characteristics of the resulting powders. The activity according to the types of the W precursor increased in the order: (NH4)10W12O41<(NH4)6W12O392WO4. The activity as a function of annealing temperature and duration of W precursors goes through a maximum at 700–800°C and 4–8 h, respectively. Increasing the specific surface area of WO3 powders, did not alter the activity significantly. Addition of 0.1–1% Pt and RuO2 as co-catalysts improved the initial rates and long-term activity by about 1.3–1.5 times. Small amounts of hydrogen were also produced from photochemical reactions involving the photoexcitation of Ce3+.  相似文献   

16.
Mechanochemical synthesis has been applied for many novel material preparations and gained more and more attention due to green and high-efficiency recently. In order to explore the influences of iron precursors on structure and performance of iron molybdate catalyst prepared by mechanochemical route, three typical and cheap iron precursors have been used in preparation of iron molybdate catalyst. Many characterization methods have been employed to obtain the physical and chemical properties of iron molybdate catalyst. Results indicate that iron precursors have the significant impact on the phase composition, crystal morphology and catalytic performance in the conversion of methanol to formaldehyde. It is hard to regulate the phase composition by changing Mo/Fe mole ratios for Fe_2(SO_4)_3 as iron precursor. In addition, as for Fe_2(SO_4)_3, the formaldehyde yield is lower than that from iron molybdate catalyst prepared with Fe(NO_3)_3·9H_2O due to the reduction in Fe_2(MoO_4)_3 phase as active phase. Based on mechanochemical and coprecipitation method, the solvent water could be a key factor for the formation of MoO_3 and Fe_2(MoO_4) for FeCl_3·6H_2O and Fe_2(SO_4)_3 as precursors. Iron molybdate catalyst prepared with Fe(NO_3)_3·9H_2O by mechanochemical route, shows the best methanol conversion and formaldehyde yield in this reaction.  相似文献   

17.
A total of 10 noble metal (Rh, Pt, Pd, Ru and Ir) catalysts, either supported on CeO2 or Ce0.63Zr0.37O2, were prepared. Catalysts were fully characterized using XRD, N2 adsorption at −196 °C, TEM and H2 chemisorption. Oxygen storage processes were carefully investigated. The influence of temperature was checked and a key role of oxygen diffusion was further demonstrated. A review of the reactions involved in the CO transient oxidation reaction is finally proposed.  相似文献   

18.
Supporting Pt and Pd catalysts have been examined for the reduction of NO with H2 in the presence of oxygen and moisture. All catalysts showed a conversion maximum in the NO reduction at around 373 K. An additional conversion maximum was found to appear at around 573 K over several metal oxides supporting Pd, and Pd/TiO2 gave the highest conversion at around 573 K among the catalysts tested. In the reaction at 373 K, NO might be reduced directly by H2 both on Pt and Pd catalysts to give N2 and N2O. At the conversion maximum of the Pd/TiO2 catalyst at 575 K, however, in situ generated NO2 seems to react with H2.  相似文献   

19.
Hydrogenating catalysts were prepared by inserting Ru into the pores of mesoporous Al-MCM-41 materials by selective adsorption of [Ru(NH3)6]3+. Ru/support catalysts were obtained after reduction with H2. The activities of these catalysts in hydrogenation reactions were compared to those of Ru/HY and Ru/SiO2. The catalytic properties in the absence of sulfur were tested in benzene hydrogenation, and the intrinsic activities of all the catalysts (either supported on mesoporous materials or on zeolites) were identical. It was concluded from this result that the dispersion of the Ru metallic phase was similar for all these catalysts. These samples were tested in the tetralin hydrogenation in pure H2 and in the presence of H2S (330 ppm of H2S in H2). They were found to be much less active than the zeolite-supported catalysts in the presence of H2S. It is proposed that the lower activity of the catalysts supported on mesoporous materials is either due to their milder acidity, as evidenced by NH3-TPD, cumene cracking and pyridine desorption experiments, or to the localization of the Ru nanoparticles on alumina islands.  相似文献   

20.
In this paper, the effect of CO2 and H2O on NOx storage and reduction over a Pt–Ba/γ-Al2O3 (1 wt.% Pt and 30 wt.% Ba) catalyst is shown. The experimental results reveal that in the presence of CO2 and H2O, NOx is stored on BaCO3 sites only. Moreover, H2O inhibits the NO oxidation capability of the catalyst and no NO2 formation is observed. Only 16% of the total barium is utilized in NO storage. The rich phase shows 95% selectivity towards N2 as well as complete regeneration of stored NO. In the presence of CO2, NO is oxidized into NO2 and more NOx is stored as in the presence of H2O, resulting in 30% barium utilization. Bulk barium sites are inactive in NOx trapping in the presence of CO2·NH3 formation is seen in the rich phase and the selectivity towards N2 is 83%. Ba(NO3)2 is always completely regenerated during the subsequent rich phase. In the absence of CO2 and H2O, both surface and bulk barium sites are active in NOx storage. As lean/rich cycling proceeds, the selectivity towards N2 in the rich phase decreases from 82% to 47% and the N balance for successive lean/rich cycles shows incomplete regeneration of the catalyst. This incomplete regeneration along with a 40% decrease in the Pt dispersion and BET surface area, explains the observed decrease in NOx storage.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号