首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 375 毫秒
1.
综述了锂硫电池存在的问题和碳纤维、碳纳米管、氧化石墨烯、多孔碳四种碳材料的性能以及其在锂硫电池正极中的应用,并探讨了碳材料原位掺杂非金属(C、N、O、B等)和复合各种金属化合物对材料的导电性和对多硫化物吸附性能的影响,以及对锂硫电池循环性能的影响。提出非金属掺杂多孔碳材料复合金属化物作为锂硫电池正极碳材料来降低多硫化物的穿梭效应以及反应过程中的体积膨胀,提高活性物质利用率,进而提高锂硫电池性能。  相似文献   

2.
《应用化工》2022,(4):979-984
综述了锂硫电池存在的问题和碳纤维、碳纳米管、氧化石墨烯、多孔碳四种碳材料的性能以及其在锂硫电池正极中的应用,并探讨了碳材料原位掺杂非金属(C、N、O、B等)和复合各种金属化合物对材料的导电性和对多硫化物吸附性能的影响,以及对锂硫电池循环性能的影响。提出非金属掺杂多孔碳材料复合金属化物作为锂硫电池正极碳材料来降低多硫化物的穿梭效应以及反应过程中的体积膨胀,提高活性物质利用率,进而提高锂硫电池性能。  相似文献   

3.
《化工科技》2021,29(3)
为了解决锂/硫电池中硫基电极材料导电性差且存在着穿梭效应、体积膨胀效应等缺点,人们进行了大量的改性研究。其中,用氮掺杂的多孔碳材料容易对电解液中溶解的多硫化物活性材料进行更好的吸附,从而抑制了锂/硫电池中多硫化物的溶解和迁移而引起的穿梭效应;另外,导电聚合物具有较好的电子导电性,作为硫/碳复合材料的载体,可以提高硫基电极材料的电导率,使锂/硫电池具有更好的循环稳定性。对锂/硫电池硫基复合电极材料的上述2种重要改性方法进行了详述,介绍了在锂/硫电池中的应用研究进展状况,并对上述材料在电化学储能中的应用进行了展望。  相似文献   

4.
锂硫电池因其能量密度高、成本较低、绿色环保等特点近年来受到广泛关注,但是当采用醚类电解液时,反应的中间产物会发生溶解穿梭导致活性物质流失和库仑效率低等严重问题,在正极和隔膜之间嵌入功能性中间层是解决这些问题的有效手段。对近年来锂硫电池中间层的研究进展进行了介绍,从抑制多硫化物扩散、降低正极界面电阻以及提升反应动力学三个方面对中间层进行分类总结,并展望了锂硫电池功能性中间层未来的设计方向和发展前景。  相似文献   

5.
抑制多硫化物穿梭是高容量锂硫电池研究的主要挑战。二维MXene材料具有高效吸附多硫化物的功能。从MXene理化性质、MXene优异的电化学性质及在锂硫电池中应用方面系统地介绍了二维MXene材料在锂硫电池中的研究进展。  相似文献   

6.
锂硫电池作为高能量密度的二次电池存在硫的低导电性和多硫化物的穿梭效应等问题。通过制备高还原度的氧化石墨烯隔膜,并将其应用于锂硫电池。利用石墨烯片层形成的空间位阻和小介孔结构,可阻挡多硫化物的迁移以及其高导电性可减弱电池极化。在0. 2 C下,采用高还原氧化石墨烯隔膜的锂硫电池初始比容量达到了1 143. 2 m Ah/g,经过100次循环后容量保持率为74. 25%。此外,在2 C下仍有626. 1 m Ah/g的比容量。表明高还原氧化石墨烯隔膜可以有效提升锂硫电池的电化学性能,体现出卓越的长循环稳定性和杰出的倍率性能。  相似文献   

7.
锂硫电池以其高理论比容量、环境友好和低成本等优点成为理想的下一代高能量密度储能装置。但活性材料的绝缘特性、多硫化物的穿梭效应和硫物种缓慢的动力学转化过程,导致电池性能持续衰减,是目前阻碍锂硫电池商业化发展的关键。利用催化材料加速硫物种转化,研究催化氧化还原动力学,从而实现高性能锂硫电池的开发、认知硫物种微观转化机制,是近年来受到广泛关注的研究热点。本综述从理解多硫化物产生、转化和硫化锂沉积等角度入手,讨论了锂硫化学中的催化转化特点,综述了近年来锂硫电池催化材料的研究进展,评述了催化剂的设计策略与评价方法,可为高活性锂硫电池催化剂材料提供一定的借鉴。  相似文献   

8.
文摘     
正碳纳米管承载MoSe_2纳米片作为锂硫电池的夹层材料(英文)[刊,中]/邵智韬,武立立,杨月,等//新型炭材料,2021,36(1):219-216多硫化物的穿梭效应是锂硫(Li-S)电池最致命的固有问题。本文通过在商业聚丙烯隔膜上涂覆碳纳米管支撑的MoSe_2纳米片,成功构建了对多硫化物具有强吸附作用的功能化夹层,有效抑制了多硫化物穿梭效应的发生。  相似文献   

9.
简要介绍了锂硫电池正极材料的分类与循环性能,叙述了硫-多孔碳材料、硫-石墨烯复合材料以及硫-聚合物复合材料的常见合成方法和特点,详细分析了硫-微孔碳材料、硫-氧化石墨烯材料、硫-聚丙烯腈材料、硫-聚吡咯材料以及硫-聚苯胺材料的研究与应用现状,并探讨了锂硫电池正极材料的发展前景。  相似文献   

10.
锂硫电池具有高能量密度(2600 Wh·kg~(-1))和高理论比容量(1675 mAh·g~(-1))的优越特性,引起了研究者的极大关注。然而,锂硫电池(LSBs)的商业化应用,仍然面临硫的导电性低、多硫化物的穿梭效应以及充放电过程中体积急剧膨胀等技术阻碍。本文重点介绍了通过开发硫/碳复合电极材料来提高LSBs电化学性能的一些有效策略,对LSBs在未来面临的挑战和发展前景进行了展望。  相似文献   

11.
文摘     
<正>碳质材料在锂硫电池中的应用研究进展[刊,中]/张强,程新兵,黄佳琦,等//新型炭材料,2014,29(4):241-264随着石墨负极的成功商用,锂离子电池在智能手机、笔记本电脑等便携式电子设备中已得到广泛应用。锂硫电池系统具有极高的理论能量密度,在多种储能系统中是最具潜力的一种二次电池。纳米碳质材料在新型锂硫电池的开发过程中处于重要地位,通过纳米炭的引入,可以获得导电复合正极材料,控制多硫化物的穿梭,从而有望实现正极硫材料的  相似文献   

12.
锂硫电池理论能量密度高(2 600 W·h/kg)、硫原料丰富、成本低,是最有发展前景的锂二次电池技术之一。然而硫以及放电产物硫化锂电导率低,电化学反应过程中生成的可溶性多硫化物的"穿梭效应"以及电池充放电过程中电极的体积效应等,影响了锂硫电池性能的发挥,阻碍了锂硫电池实用化进程。近年来,通过电极材料的设计、电极表界面的修饰以及电解液体系优化,锂硫电池的性能得到显著提升。综述了近年来锂硫电池中硫正极、隔膜和金属Li表界面修饰方面的研究进展。  相似文献   

13.
硫和硫化物作为负极材料相较于商业化石墨电极具有更高理论比容量的优势,然而由于其"穿梭效应"和无限扩张的体积导致锂硫电池的性能低下。本文综述了目前一些研究方法,通过改变锂硫电池的形貌、多孔结构、催化剂等方向来提高锂硫电池的性能。  相似文献   

14.
随着电动汽车和便携式电子设备的发展,锂硫电池因其高的理论比容量(1 675 m A·h/g)和高的理论能量密度(2 600 W·h/kg)而引起人们的广泛关注,在未来非常有可能成为常用的电源设备。然而,锂硫电池存在较低的离子和电子导电性、较差的循环性以及生成的多硫化物易溶于有机溶剂等缺点,严重制约了锂硫电池的应用。要解决上述问题,提高单质硫的导电性、抑制电极反应中的穿梭效应势在必行,因此如何改良正极材料仍然是研究的关键点。主要总结了近年来各种碳材料在锂硫电池正极材料中的应用研究现状及进展,简要阐述了这些碳材料应用于锂硫电池正极材料中存在的问题及面临的挑战,并对其未来的发展趋势进行了预测。  相似文献   

15.
用于锂硫电池的碳质材料具有优异的力学、电学、导热性能,可调的孔结构以及丰富的表面特性,能有效地限制多硫化物的溶解,改善锂硫电池的电化学性能。因此,本文分别从一维碳、二维碳和三维碳这3个方面综述了锂硫电池硫基碳复合正极材料的研究进展,探讨了改性硫基碳正极材料的制备方法和结构设计。分析表明,高比表面积和高孔容积的多孔纳米碳材料对提高锂硫电池电化学性能而言至关重要,并提出用金属硫化物掺杂的有序介孔碳复合材料作为锂硫电池的正极材料能促进锂离子在正负极间的迁移,提高锂硫电池的循环稳定性和活性物质利用率。  相似文献   

16.
锂硫电池具有很高的能量密度[2 600(W·h)/kg],其正极材料硫具有储藏丰富、对环境友好等优点,因此锂硫电池成为下一代二次电池的研发重点。然而,硫的高绝缘性、反应过程中体积的变化以及中间产物多硫离子溶解等难题,使其目前很难实现商品化。石墨烯具有超高的导电性和优异的力学性能,其与硫制成的复合材料作为电池正极材料可以有效地解决上述问题。从石墨烯–硫复合材料、石墨烯–碳–硫复合材料、石墨烯–聚合物–硫复合材料、石墨烯–氧化物–硫复合材料等方面出发,总结了石墨烯在锂硫电池中作为正极材料的最新进展,并且提出了未来石墨烯在锂硫电池中应用的研究主要在探索石墨烯简捷的制备方法、研究石墨烯新的应用方式、开发多种材料复合等方面。  相似文献   

17.
锂/硫电池具有高理论容量、高能量密度、原材料丰富而廉价并且对环境污染小等优点,受到了广泛的关注。然而硫电极导电率较低,循环过程中电极体积发生膨胀导致电极材料脱落,以及存在穿梭效应等缺点,从而制约了锂/硫电池的发展。结合近几年锂/硫电池硫基正极复合材料的研究现状,从硫/石墨烯复合电极材料、硫/碳复合电极材料、硫/导电聚合物复合电极材料三个方面进行阐述,介绍了它的研发状况及发展趋势。  相似文献   

18.
采用改进的Hummers法制备了氧化石墨(GO),对GO进行碳酸浸渍后,通过微波固相法剥离其为少层的还原氧化石墨烯(MRGO)。并采用低温原位化学沉积法制备微波还原氧化石墨烯/纳米硫(MRGO/NS)锂硫电池正极复合材料。通过FT-IR、XRD、SEM、TEM、BET对所制备的MRGO和MRGO/NS的微观结构、形貌等进行表征,采用恒流充放电测试和交流阻抗测试对复合材料的电化学性能进行研究。结果表明,通过微波固相法剥离碳酸浸渍后的GO所制备的MRGO为少层的折扇状还原氧化石墨烯,可为锂硫电池的硫和多硫化物提供足够的容纳空间,从而缓解穿梭效应,提高了电极材料的循环性能和倍率性能。  相似文献   

19.
微波法制备还原氧化石墨烯及其在锂硫电池中的应用   总被引:1,自引:0,他引:1  
杨蓉  李兰  王黎晴  付欣  燕映霖  陈利萍  路蕾蕾 《化工学报》2017,68(11):4333-4340
采用改进的Hummers法制备了氧化石墨(GO),对GO进行碳酸浸渍后,通过微波固相法剥离其为少层的还原氧化石墨烯(MRGO)。并采用低温原位化学沉积法制备微波还原氧化石墨烯/纳米硫(MRGO/NS)锂硫电池正极复合材料。通过FT-IR、XRD、SEM、TEM、BET对所制备的MRGO和MRGO/NS的微观结构、形貌等进行表征,采用恒流充放电测试和交流阻抗测试对复合材料的电化学性能进行研究。结果表明,通过微波固相法剥离碳酸浸渍后的GO所制备的MRGO为少层的折扇状还原氧化石墨烯,可为锂硫电池的硫和多硫化物提供足够的容纳空间,从而缓解穿梭效应,提高了电极材料的循环性能和倍率性能。  相似文献   

20.
彭娜  翟鹏飞  王景涛  王俊晓  刘咏 《化工学报》2020,71(5):2389-2400
锂硫电池具有较高的理论能量密度,被认为是最有发展潜力的下一代高能量密度储能器件之一。然而多硫化物穿过隔膜形成的穿梭效应导致电池容量衰减过快、使用寿命降低,严重阻碍了锂硫电池商业化。以层状氧化石墨烯为模板,采用氧化还原法合成了二氧化锰纳米片,通过低压抽滤获得二氧化锰改性隔膜。利用TEM、XRD、FTIR、SEM、AFM等对该二氧化锰纳米片及改性隔膜的微观结构、形貌等进行表征;采用恒电流充放电、循环伏安法、电化学阻抗法对二氧化锰改性隔膜电化学性能进行测试。研究结果表明,二氧化锰纳米片能均匀覆盖聚丙烯隔膜表面的微孔,通过物理阻隔和催化作用,有效抑制了多硫化物的穿梭,提高了锂硫电池的比容量和循环稳定性。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号