首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 187 毫秒
1.
The influence of Mg content on the microstructures and mechanical properties at room temperatures of Al-3.5Cu-(0.71-1.81)Mg alloys was studied.Precipitation phases in the alloys were identified by TEM and HRTEM.The results show that when Mg contents increase from 0.71 to 1.81 wt%,the precipitates are transformed from S,S″,Ω,and θ’ phases to Sand S′phases,and Ω phase is first observed in Al-3.48Cu-0.71 Mg alloy with Cu/Mg mass ratio of 5 during the conventional aging heat treatment(190 ℃/12 h).Regard to aging hardness effect of the tested alloys,the hardness of the alloys improves with the increase of Mg content,but the increases become slow when Mg content is greater than 1.35 wt%.  相似文献   

2.
The influence of Mg content on the microstructures and mechanical properties at room temperatures of Al-3.5Cu-(0.71-1.81)Mg alloys was studied.Precipitation phases in the alloys were identified by TEM and HRTEM.The results show that when Mg contents increase from 0.71 to 1.81 wt%,the precipitates are transformed from S,S″,Ω,and θ' phases to Sand S′phases,and Ω phase is first observed in Al-3.48Cu-0.71 Mg alloy with Cu/Mg mass ratio of 5 during the conventional aging heat treatment(190 ℃/12 h).Regard to aging hardness effect of the tested alloys,the hardness of the alloys improves with the increase of Mg content,but the increases become slow when Mg content is greater than 1.35 wt%.  相似文献   

3.
The effects of trace elements Cd and Sn on precipitation process of Al-Si-Cu-Mg cast alloys were investigated in the present research.It is shown that the addition of Cd and Sn not only increases remarkably the aging peak hardness and reduces the time to reach aging peak,but also eliminates the double-aging-peak phenomenon which appears in Al-Si-Cu-Mg alloys.In Al-Si-Cu-Mg alloys the first aging peak corresponds to GP zones(especially GPⅡ) ,and the second one is caused by metastable phases.The obvious time interval of transition from GPⅡ to metastable phases associates with the double-aging-peak phenomenon.The results of DSC and TEM show that Cd/Sn elements suppress the formation of GPⅠzone,stimulate the formation of θ",θ' and θ phases,and then shorten remarkably the temperature intervals of each exothermic peak.Because the transition interval between GPⅡzone and metastable phases is shortened by Cd/Sn in Al-Si-Cu-Mg cast alloys,θ' phase coexists with θ" phase in matrix of ageing peak condition,which causes effective hardening on the alloys,and at the same time,eliminates the double-aging-peak phenomenon.  相似文献   

4.
High-strength Al-Cu-Mg-Ag-Sm alloy was fabricated and subjected to single-stage aging and pre-aging(two-stage aging). Effect of pre-aging on micros tructure and mechanical properties of the alloy was investigated. It is found that the alloy is mainly composed of α-Al, Al_2Cu, Al_2CuMg and AlCu_4Sm. The number of plate-like Ω Al_2Cu precipitates is comparable to that of rod-like S Al_2 CuMg precipitates in the single-stage aged alloy, whereas, in the two-stage aged alloy, it is much higher than that of S precipitates. Q precipitates have a smaller plate thickness and distribute more uniformly in the two-stage aged alloy than in the single-stage aged alloy.Ultimate tensile strength(UTS) and yield strength of the two-stage aged alloy are 12% higher than those of the single-stage aged one, indicating a better aging hardening caused by the two-stage aging. The increased tensile properties mainly come from both stronger precipitation strengthening caused by more Ω precipitates in the twostage aged alloy and stronger solution strengthening from Mg atoms. The fracture surfaces consist of both dimple zones composed of microscale dimples and platform zones composed of nanoscale dimples. The total area of dimple zones for single-stage aged alloy is much higher than that for two-stage aged alloy, which can be attributed to different numbers of Ω precipitates in the two alloys.  相似文献   

5.
The aging behavior of Al-Cu-Mg-Ag alloys with high Cu/Mg was studied by transmission electron microscopy (TEM) and small-angle X-ray scattering (SAXS) using synchrotron radiation. TEM study reveals that the major strengthening phases of the alloy after aging at 160?C for 10 h are Ω and less θ′. SAXS study shows that the scattering patterns are composed of several concentric circles at the beginning of aging process, which is replaced by the butterfly-wings scattering patterns with the increase of aging time. The butterfly-wings scattering patterns are composed of several branches. The angles between the branches are roughly equal to that between the habit planes of precipitates. The evolution of Guinier radius with aging time indicates the good coarsening resistance of the precipitates. The evolution of integrated intensity is consistent with the classical two-step precipitation process.  相似文献   

6.
The effect of the second phase precipitation behavior on the mechanical properties and fracture behavior of the modified casting Al-Cu alloys was investigated. The tensile strength of the alloys increases firstly and then decreases due to the appearance of θ' precipitation phases, which increases firstly and then become coarser with the aging time increasing from 10 h to 20 h at 155 ℃. The strength of the alloys reaches the peak, resulting from ,Ω and θ' precipitation phases, and decreases due to ,Ω phases becoming coarser and θ' precipitation decreasing with the aging time increasing from 10 h to 20 h at 165 ℃. ,θ phase becoming coarser and θ' precipitation decreasing result in the strength of the alloys drastically decreasing after aging at 175 ℃ for 20 h. The ductility remains high level with increasing aging time at 155 ℃. The ductility irregularly changes as aging time prolongs at 165 ℃. The ductility is very low and at the same time gradually decreases with increasing aging time at 175 ℃. The Al-Cu alloy with a promising combination of tensile strength and ductility of about 474 MPa and 12.0% after aging at 165℃ for 10 h is due to a dense, uniform distribution of,Ω precipitation phases together with a heterogeneous distribution of θ' precipitations.  相似文献   

7.
The aged characteristics and microstructure of two Al-Cu-Mg-Ag alloys with and without Ce addition are investigated by TEM and mechanical properties test. The results show that trace Ce addition inhibits precipitating process and delays peak aging time 0.25% Ce additions decrease both tensile strength and ductility. TEM observation shows that the morphology of Ω precipitate can be modified by the small addition of Ce, The trace Ce affects the microstructure by reducing the volume fraction of Ω precipitate. It can be concluded that the intensive interaction between Ce and Cu decreases the Cu atom concentration in alloy matrix and reduces the precipitated kinetics for Ω phase.  相似文献   

8.
The effect of stress on the microstructure and properties of an Al-Cu-Mg-Ag alloy under-aged at 165 ℃ for 2 h during thermal exposure at 200 ℃ was investigated. The tensile experimental results show that the remained tensile strength of both specimens at room temperature after being exposed at 200 ℃ with and without applying stress rises firstly, and then drops with the increasing of exposure time. The peak value of the remained strength reaches 439 MPa for non-stress-exposure for 10 h, and 454 MPa after being exposed with stress loaded for 20 h at 220 MPa. The elongation change is similar to that of strength. After being exposed for 100 h, specimen exposed at 220 MPa still remains a tensile strength of 401 MPa, larger than that exposed without applying stress. TEM shows that the microstructure of under-aged alloy is dominated by Ω phase mainly and a little θ′ phase. The θ′ and Ω phases are believed competitive with increasing exposure time. The width of precipitation free zone(PFZ) increases and the granular second phase precipitates at grain-boundary correspondingly. It is shown that the mechanical properties of alloy decrease slightly and present good thermal stability after thermal exposure at 200 ℃ and 220 MPa for 100 h.  相似文献   

9.
The influence of pre-deformation on aging precipitates of three near peak-aged Al–Cu–Li alloys,1460 alloy with a low Cu/Li ratio(1.46),2050 alloy with a high Cu/Li ratio(4.51) and 2A96 alloy with a medium Cu/Li ratio(2.97),was investigated.The strength of the aged alloys is enhanced by the pre-deformation.The effectiveness of pre-deformation on precipitates is dependent on the alloy's composition.With increasing the pre-deformation,the population density of T1(Al_2Cu Li) precipitates increases in all three Al–Cu–Li alloys and their diameter decreases in 2050 and 2A96 alloys,and the greatest effectiveness is observed in 2A96 alloy.The pre-deformation also increases the population density of θ'(Al_2Cu)precipitates and decreases their diameter in 2050 and 2A96 Al–Li alloys,but the effectiveness is smaller compared to that on T1 precipitates.In 1460 alloy subjected to two-step aging at 130 °C for 20 h followed by 160 °C for 12 h,the main precipitates are δ'(Al_3Li).At 2%–6% pre-deformation,GP-I zones form and pre-deformation displays little influence.Eight percentage pre-deformation promotes θ'/θ' precipitation and increases their population density.  相似文献   

10.
The effect of tensile stress on thermal microstructure evolution of Ω phase in an AI-Cu-Mg-Ag alloy with high Cu/Mg ratio and higher Ag content was investigated by transmission electron microcopy (TEM) .The samples were aged at 200 ℃ for 1 h (T6 condition), then thermal exposed at 250 ℃ for 100 h with and without a tensile stress (130 MPa), respectively. The results indicate that Ω precipitates uniformly disperse in the matrix as a major precipitate after artificially aging at 200℃ for 1 h (T6 condition). Exposed at 250℃ for 100 h without stress, Ωprecipitates dissolve dramatically. Whereas, during stress exposure they coarsen unexpectedly rather than dissolve into matrix. It can be deduced that the stress retards the redissolution of Ω phase.  相似文献   

11.
《Acta Materialia》2001,49(12):2285-2295
Exposure of age-hardenable aluminum alloys to an elastic loading, either for “age-forming” and other manufacturing processes or during utilization at relatively high temperature, may lead to microstructural changes such as a stress-orienting effect of plate-like coherent or semi-coherent precipitates in the alloys. Preferentially oriented θ″/θ′-precipitate structures were quantitatively examined in single-crystal Al–2.5Cu, Al–4Cu and cube-textured Al–5Cu alloys aged to peak strength under compressive stresses. The dependence of the stress orienting of the θ″/θ′-precipitates on the applied stress, aging temperature and the copper content were determined. The effect is discussed and explained within the frame of classical nucleation and growth theories that incorporate the interaction energy between the external stress and the strain fields due to the lattice misfits between the θ″/θ′-precipitates and the Al matrix.  相似文献   

12.
In对Al-3.5Cu合金析出过程的影响   总被引:1,自引:0,他引:1  
利用透射电镜(TEM),差示扫描量热仪(DSC)等方法对Al-3.5Cu和Al-3.5Cu-0.5In(质量分数,%)合金中θ′相的生成及粗化行为进行对比研究。在175℃时效时In的添加显著地促进了合金的时效响应,时效峰值硬度提高了约200MPa。TEM观察结果显示富铟(In′)粒子在时效早期均匀析出,为θ′相的析出提供了非均匀形核位置;且在θ′相宽面发现了位于其片状顶角的In′粒子;时效后期含In合金中θ′相粗化速率明显小于无In合金。时效前增加6%预变形后两种合金时效响应及效果差别不大,证实T6状态In主要是通过淬火空位团簇,从而促进θ′相析出。  相似文献   

13.
The exposure of Al–5Cu alloy to an external stress with normal aging was carried out. The effects of external stress-aging on the morphology and precipitation behavior of θ″ phase were investigated by transmission electron microscopy (TEM), differential scanning calorimetry (DSC) and first principle calculation. The size of the θ″ phase precipitated plates in stress-aging (453 K, 6 h, 50 MPa) is 19.83 nm, which is smaller than that of those present (28.79 nm) in stress-free aging (453 K, 6 h). The precipitation process of θ″ phase is accelerated by loading external stress aging according to the analysis of DSC results. The apparent activation energy for the external stress-aging is 10% lower than the stress-free one. The first principle calculation results show that the external stress makes a decrease of 6% in the interface energy. The effects of the stress on aging process of the alloy are discussed on the basis of the classical theory. The external stress changes the morphology and precipitation behavior of θ″ phase because the critical nucleation energy is decreased by 19% under stress aging.  相似文献   

14.
Al-5.3Cu-0.8Mg-0.6Ag alloys containing 0, 0.1, 0.3 and 0.5 (mass. %) Sc were prepared by ingot metallurgy and thermomechanical treatment. The effect of Sc addition on the precipitation and microstructure of the alloys has been investigated using mechanical testing, optical microscope, scanning electron microscopy (SEM) and transmission electron microscopy (TEM). It has been shown that trace Sc element refines the grains of the casting alloys and the average grain size decreases from 85 μm to 30 μm. Increasi...  相似文献   

15.
A physically based numerical model to predict the microstructure evolution and yield strength of high Cu-to-Mg mass ratio Al-Cu-Mg-Ag alloys during the whole ageing process was developed.A thermodynamically-based precipitation model,employing the classical nucleation and growth theories,was adapted to deal with the precipitation kinetics (evolution of radius and volume fraction of precipitates for Ω phase) of aged Al-Cu-Mg-Ag alloys.The model gives an estimation of the precipitation kinetics (evolution of radius and density of precipitates for both θ' and Ω phases) of the alloy.The strengthening model based on Orowan mechanism was deduced.The microstructural development and strength predictions of the model are generally in good agreement with the experimental data.  相似文献   

16.
采用相场模型对外加应力场对共格沉淀析出过程的微观结构演化进行模拟研究,在外加应力场作用下,非均匀弹性模量系统沉淀相的析出过程发生重大的变化,粒子沿弹性软方向呈各向异性析出,这种各向异性生长与外加应力、点阵错配度的符号以及非均匀模量差的符号有关。采用双级时效模拟方式时,外加应力场对析出相的成核及生长阶段均有影响,只是影响程度与析出相自身的点阵错配度有关。对适当的体系采用应力时效的方式可能是实现除分子束外延技术之外的一种全新的制备超晶格微结构的方法。  相似文献   

17.
Aluminum alloys containing magnesium and silicon as the major solutes are strengthened by precipitation of the metastable precursors (β″) of the equilibrium β (Mg2Si) phase. In this study, dynamic aging of two Al-Mg-Si alloys—the 6061 (Al-1.34% Mg2Si) and 6069 (Al-2.25% Mg2Si) alloys—was conducted through equal channel angular extrusion (ECAE). Equal channel angular extrusion-assisted dynamic aging provides the potential for improving mechanical properties. The aging time scale is reduced from ∼1,000 min. for conventional static peak aging to ∼10 min. by using ECAE-assisted dynamic aging. Compared to the significant strengthening effect in static aging treatment, a notable further increase in ultimate tensile strength is achieved by dynamic aging: over 40 MPa for the 6061 alloy and 100 MPa for the 6069 alloy. Microstructures of both aged alloys were characterized using transmission electron microscopy; dislocation-assisted precipitation was observed to be the primary precipitate nucleation and growth mechanism during the dynamic aging process. It is concluded that ECAE-assisted dynamic aging is controllable and efficient in executing aging treatment that could result in superior mechanical properties of Al-Mg-Si alloys.  相似文献   

18.
Transmission electron microscopy (TEM), scanning electron microscopy (SEM), hardness tests and tensile tests were performed to investigate the effect of aging on microstructure and mechanical properties of forged Al-4.4Cu-0.7Mg-0.6Si alloy. The results show that the alloy exhibits splendid mechanical properties with an ultimate tensile strength of 504 MPa and an elongation of 10.1% after aging at 170 °C for 16 h. With tensile testing temperature increasing to 150 °C, the strength of the alloy declines slightly to 483 MPa. Then, the strength drops quickly when temperature reaches over 200 °C. The high strength of the alloy in peak-aged condition is caused by a considerable amount of θ′ and AlMgSiCu (Q) precipitates. The relatively stable mechanical properties tested below 150 °C are mainly ascribed to the stability of θ′ precipitates. The growth of θ′ and Q precipitates and the generation of θ phase lead to a rapid drop of the strength when temperature is over 150 °C.  相似文献   

19.
The kinetics of aging and mechanical properties of aluminum alloys of the Al-Cr-Sc system bearing about 0.4% Sc and up to 0.8% Cr and mechanical properties of alloys of the Al-4.5% Mg-Cr-Sc system with about 0.4% Sc and up to 0.3% Cr are studied. The effect of scandium and chromium additives on the structure and strength characteristics of aluminum alloys is determined. The hardness and the electric resistivity of the alloys are measured in the process of aging at 350°C for up to 64 h.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号