首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
某钼、锌、铁复杂多金属矿的选矿工艺研究   总被引:3,自引:0,他引:3  
李崇德  陈金中 《铜业工程》2006,(1):15-18,10
针对某钼、锌、铁复杂多金属矿石中含有可浮性极好的滑石、蛇纹石等特点,采用选择性捕收剂优先反浮选影响钼浮选的脉石,然后选钼,再锌、硫混选;浮选尾矿弱磁选铁。采用该工艺,试验获得了钼品位45.54%、回收率82.29%的钼精矿和锌品位48.07%、回收率84.14%的锌精矿,以及铁品位65.20%、对原矿全铁回收率53.46%(对原矿磁铁矿回收率81.30%)的铁精矿,同时获得了硫品位为38.75%、回收率为60.42%的硫精矿,使钼、锌、铁、硫都得到了综合回收。  相似文献   

2.
《稀土》2017,(3)
白云鄂博选矿采用先选铁后回收稀土的流程,稀土回收率不足10%。为探索提高白云鄂博选矿稀土回收率的方法,对原矿直接浮选稀土然后回收铁的开路选别流程做了尝试。结果表明,稀土浮选粗精矿经过三次精选后可获得稀土品位为41.50%,回收率为41.87%的稀土精矿,稀土粗尾矿经过一次磁选可获得铁品位为67.00%,回收率为65.67%的铁精矿。  相似文献   

3.
福建某铁钼尾矿属于低品位难选尾矿,尾矿中铁品位为6.45%(磁性铁3.08%),以磁铁矿为主,少量赤铁矿,微量褐铁矿;钼品位为0.0076%,主要是辉钼矿。选钼采用一粗一扫六精流程,以水玻璃为分散剂、硫酸锌和亚硫酸钠为抑制剂、煤油为捕收剂、2~#油为起泡剂;选铁采用磁粗选-再磨-磁精选流程,磁选设备为Slon高梯度强磁选机,最终获得钼精矿品位36.46%、回收率32.88%,铁精矿品位64.85%、回收率34.93%的良好指标。  相似文献   

4.
西北某磁铁矿石属于典型的低品级微细粒嵌布的难选磁铁矿石。本文采用多种工艺对该类矿石进行试验,探索提高精矿铁品位及回收率的有效途径,包括阶段磨选、反浮选、尾矿强磁选、焙烧磁选、直接还原等。其中,"阶段磨选-精矿反浮选,尾矿强磁选-焙烧弱磁选"工艺获得精矿品位为60.02%、回收率为66.10%、选矿比为2.772倍的综合指标。  相似文献   

5.
梅山铁矿的选矿工艺是中破碎以后的矿石经过洗矿分级后磁选重选,提高精矿铁品位,抛除废石。为了研究YMT-75跳汰机分选精度,掌握选别指标,试验取样跳汰机给矿、精矿、尾矿,对精矿尾矿进行实验室手选,对中矿(中矿分别是从精矿中手拣出低品位矿物和尾矿中手拣出高品位矿物)进行单独磨矿磁选,分析弱磁-强磁选别指标,为后序生产制定精确的跳汰机选别指标,指导生产操作,提高资源回收率。  相似文献   

6.
国内某低品位钼矿,矿石中钼品位仅为0.055%,铜品位0.0120%。研究采用粗磨-粗选-粗精矿再磨-精选工艺流程,粗选添加少量石灰作为黄铁矿、磁黄铁矿抑制剂,粗精矿再磨后添加硫化钠作为钼铜浮选分离铜抑制剂,最终实现钼精矿品位55%以上,钼金属回收率达到90%以上的选别指标。  相似文献   

7.
复杂钼铜铁多金属矿的综合利用研究   总被引:3,自引:0,他引:3  
对某钼铜铁多金属矿矿石进行了工艺矿物学研究,该矿石是以钼为主、并生铜铁的多金属矿.根据矿石的性质,采用钼铜混合浮选混合精矿再分离-尾矿磁选选铁的工艺流程.铜钼混合浮选时,采用煤油、柴油混合捕收剂,有利于提高钼回收率,采用选铜特效捕收剂BK802,有利于提高铜的回收率.铜钼混合精矿分离时,采用煤油作为捕收剂,最终选择BK310进行铜钼分离.对铜钼混选尾矿进行了选铁实验,最适宜的磁场强度为0.12~0.16 T之间.研究结果表明:在原矿铜品位0.082%的情况下,可以得到含铜品位15.16%、铜回收率80.54%的铜精矿;采用新型抑制剂BIC310,一次分离三次精选即得到钼精矿钼品位50.87%,回收率85.94%;磁铁矿单体解离较好,一次粗选后再磨,得到铁精矿铁品位69.47%、铁回收率41.89%的铁精矿.  相似文献   

8.
为了从某公司铜炉渣浮选尾矿中有效回收铁,分析了浮选尾矿炉渣的性质,研究了直接磁选、高场强粗选抛尾及粗精矿再磨再选、低场强粗选抛尾及粗精矿再磨再选三种工艺。试验结果表明,通过上述三种工艺,铜炉渣中的铁可以有效回收。通过经济分析比较,推荐采用直接磁选方案,可获得铁品位49.85%、回收率13.02%的矿精铁。  相似文献   

9.
某低品位钨钼铋多金属矿具有贫、细、杂等难选的特点,现场白钨矿生产指标低,对现场钼铋浮选尾矿研发了"硫化矿浮选-钨常温粗选-钨粗精矿加温精选"新工艺。浮硫尾矿采用组合调整剂、高效白钨矿捕收剂ZL和钨粗精矿加温精选新药剂制度,解决了低品位白钨矿浮选回收技术难题。对含WO30.21%的实验给矿,获得钨精矿WO3品位由工业生产的40%提高至61.94%、对给矿WO3回收率由工业生产的15%提高至78.40%,白钨矿得到有效的综合回收。  相似文献   

10.
针对西藏某磁黄铁矿、磁铁矿、石榴石等磁性矿物含量高、钨钼品位低、矿物共生关系密切的钨钼矿石进行了选矿工艺试验研究。采用磁选(预先抛尾)—钼硫等可浮—钼硫分离—钼硫尾矿再浮选脱硫—脱硫尾矿再浮选收钨的工艺流程,可获得Mo品位50. 02%、回收率77. 33%的钼精矿,WO3品位65. 06%、回收率76. 35%的钨精矿,实现了钼、钨的高效回收,为经济合理开发该类矿石提供了一定参考。  相似文献   

11.
姚伟 《中国钼业》2013,(6):27-31
介绍了东沟钼矿石特点,依据矿石性质制定了选矿工艺方案.采用阶段磨矿、阶段选别工艺,可以获得含钼品位为53.50%、回收率为90.49%的钼精矿;选钼尾矿经阶段磁选工艺可获得品位为64.32%、对磁性铁回收率为78.61%的磁铁矿.  相似文献   

12.
朱一民  周菁 《有色矿冶》2012,28(3):31-33
介绍采用磁选或重选-磁选联合流程从黄沙坪低品位钼、铋、钨、萤石、铁(石榴石)多金属矿的萤石浮选尾矿中回收石榴石的选矿工艺。将石榴石精矿细磨加工后,用作砂纸的磨砂和橡胶的充填剂均取得良好的效果。  相似文献   

13.
某含银难选氧化锌矿石氧化率高,组成复杂,选别指标较低,研究了采用浮选法对其进行分选。采用一粗三精一扫、尾矿磁选工艺流程,最终获得品位为48.42%的锌精矿,锌回收率为52.87%,产率为3.80%;锌精矿中银质量分数为2 010g/t,银回收率为65.22%。此外,还获得品位为55.30%的铁精矿,铁回收率为29.92%。  相似文献   

14.
采用研制的新型阴离子反浮选捕收剂RFe-561对袁家村铁矿石磁选精矿、祁东三安公司铁矿进行了反浮选试验,试验结果表明:采用新药剂RFe-561,可获得品位为66.25%、回收率为96.45%的反浮选铁精矿,尾矿Fe平均品位7.46%。新药剂不仅选别指标优越,而且大大降低尾矿品位,提高了资源利用效率。  相似文献   

15.
某含硫铜铁矿磁黄铁矿含量较高,使用常规抑制剂石灰抑制硫,铁精矿中硫含量超标。原矿中铜品位0.35%,铁品位28.95%,硫品位9.84%,铜大部分以黄铜矿形式存在,还含有少量的墨铜矿,铁主要以磁铁矿形式存在。使用新型抑制剂WDF-3作抑制剂,不仅能较好的抑制硫,而且后续铁精矿降硫时,较易被活化脱除。采用先浮选铜→浮选尾矿磁选→磁选粗精矿再磨再选→铁精矿浮选硫,中矿依次返回的闭路试验流程,获得铜精矿中Cu品位19.58%,回收率为74.05%,硫精矿中S品位50.21%,回收率81.59%,铁精矿中Fe品位64.89%,回收率53.87%,获得较好的选别指标。  相似文献   

16.
海南钨钼多金属矿选矿试验研究   总被引:1,自引:0,他引:1  
海南某地钨钼矿原矿含Mo 0.56%,WO3 0.28%,Fe 2.44%,钼主要以辉钼矿形式赋存于矿石中,钨主要以白钨矿和黑钨矿形式赋存于矿石中,铁主要以磁铁矿形式赋存于矿石中,属于低品位钨钼铁多金属矿。采用一次粗选一次扫选四次精选的浮选工艺回收钼,浮选尾矿采用弱磁选回收磁铁矿,一次粗选两次精选的重选工艺回收钨。通过试验得到了适合该钨钼多金属矿选矿的浮选-弱磁选-重选工艺流程,该工艺可以得到Mo品位为45.86%,含WO3 0.07%,含Fe为1.12%,回收率为88.19%的钼精矿;WO3品位72.80%,含Fe 0.07%,含Mo0.02%,回收率为82.88%的钨精矿;Fe品位为56.88%,含WO3 0.06%,含Mo 0.03%,回收率为50.15%的铁精矿,实现了对低品位钼钨铁多金属矿的综合回收利用。  相似文献   

17.
某选铁尾矿中含钼0.049%,品位较低,其中氧化钼占12.50%,且-0.038mm粒级钼金属占有率达28.69%。本试验在工艺矿物学研究的基础上,对该尾矿通过粗精矿再磨精选,采用一粗、七精、两扫工艺流程,最终获得了钼品位为47.62%、回收率为74.83%的钼精矿,取得了较好的回收指标。  相似文献   

18.
胡厚勤  张红英 《钢铁钒钛》2019,40(6):73-76,128
攀西某选厂采用"强磁—强磁—浮选"作为钛铁矿选别原则流程,强磁工序精矿作业回收率是影响钛铁矿总回收率的关键。试验研究以选铁尾矿经浓缩分级后的粗粒物料为原料,分别采用水平磁系高梯度磁选机和垂直磁系高梯度磁选机对其中钛铁矿进行回收。结果表明,在最优条件参数下,采用两种磁选机获得的精矿TiO_2回收率接近,水平磁系高梯度磁选机获得的精矿TiO_2品位更高。背景磁场强度为430 mT时,对选铁尾矿粗粒级物料经一次粗选,可获得含TiO_2 16.21%、TiO_2回收率90.49%的钛精矿。  相似文献   

19.
阐述冶炼铜渣选铜尾矿综合回收铁的工艺研究,确定采用原矿先浮铜,尾矿经磁选得到铁粗精矿,粗精矿加入分散剂再磨再磁选铁的流程,通过分散剂种类对比实验得出NSF分散剂效果最好,3次磁选得到铁的品位52.21%,铁精矿回收率为38.09%,Si02的品位为13.2%的试验指标,实现了炉渣中铁的综合利用.  相似文献   

20.
工艺矿物学研究表明,德兴铜矿大山选矿厂浮选尾矿中的铁矿物有硅酸铁、赤铁矿、褐铁矿、硫化铁、磁铁矿、铁屑及磁黄铁矿,其中磁铁矿、铁屑及磁黄铁矿具有磁性,可通过磁选回收,小型磁选试验结果表明,通过一次粗选-粗精矿再磨-两次精选工艺流程,在粗选磁场强度4500Oe,再磨细度-37μm占40%,精一磁场强度1500Oe,精二磁场强度1200Oe,从选铜尾矿中获得了铁品位60.18%,回收率1.00%的铁精矿。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号